卷积神经网络BN归一化
时间: 2024-05-08 11:13:41 浏览: 108
卷积神经网络回归模型
3星 · 编辑精心推荐
BN归一化是一种常用的卷积神经网络(CNN)的正则化方法,其主要作用是对CNN网络中每个batch的输入数据进行标准化处理,使得输入数据分布更加稳定,加速网络的训练过程,提高网络的泛化能力。
BN归一化的实现方式为:对于CNN网络中每个batch的输入数据,先计算出该batch的均值和方差,然后对该batch中的每个输入数据进行标准化处理,即将每个输入数据减去该batch的均值,再除以该batch的方差。最后再对标准化后的数据进行缩放和平移,即通过一个可学习的缩放系数和偏移量,将标准化后的数据映射到任意均值和方差的分布上。
BN归一化可以有效地减少CNN网络中各层之间的协变量转移(covariate shift)现象,提高了网络的稳定性和收敛速度,同时还能够防止梯度消失或梯度爆炸等问题的发生。
阅读全文