class SoftmaxFocalLoss(nn.Module): def __init__(self, gamma, ignore_lb=255, *args, **kwargs): super(FocalLoss, self).__init__() self.gamma = gamma self.nll = nn.NLLLoss(ignore_index=ignore_lb) def forward(self, logits, labels): scores = F.softmax(logits, dim=1) factor = torch.pow(1.-scores, self.gamma) log_score = F.log_softmax(logits, dim=1) log_score = factor * log_score loss = self.nll(log_score, labels) return loss
时间: 2024-04-18 18:24:06 浏览: 197
这是一个名为SoftmaxFocalLoss的自定义损失函数类,它继承自nn.Module类。构造函数中包含了参数gamma和ignore_lb,以及其他的可选参数。gamma是Focal Loss中的一个超参数,ignore_lb是一个指定忽略标签的索引值,默认为255。
该损失函数的前向传播方法forward接受logits和labels作为输入,并且计算出损失值。首先,通过softmax函数计算出logits的概率分布scores。然后,计算出权重因子factor,它是(1-scores)^gamma的幂次方。接下来,对logits应用log_softmax函数得到log_score,并且与factor相乘。最后,使用NLLLoss函数计算log_score和labels之间的负对数似然损失loss,并返回该损失值。
这个损失函数的目的是在多分类问题中减小易分类样本的权重,以便更加关注困难样本的训练。
相关问题
class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma
这是一个名为`LayerScale`的自定义PyTorch模块。它实现了一个层标准化的功能,通过缩放输入张量的每个元素。以下是对这段代码的解释:
- `__init__`函数初始化了`LayerScale`类的实例。它接受三个参数:`dim`表示输入张量的维度,`init_values`表示初始化缩放因子的值,默认为1e-5,`inplace`表示是否原地操作,默认为False。在该函数中,创建了一个可学习的参数`gamma`,它是一个大小为`dim`的张量,所有元素初始化为`init_values`。
- `forward`函数定义了模块的前向传播逻辑。它接受输入张量`x`作为参数,并将其与缩放因子`gamma`相乘。如果`inplace`为True,则使用原地操作`mul_()`进行乘法;否则,使用普通的乘法操作`*`。最终返回缩放后的张量。
该模块可以在神经网络中用作标准化层,用于调整输入张量的幅度或分布。通过学习缩放因子`gamma`,模型可以自动学习适合当前任务的标准化参数。
class LayerNorm(nn.Module): def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.gamma = nn.Parameter(torch.ones(features)) self.beta = nn.Parameter(torch.zeros(features)) self.eps = eps
这是一个使用 PyTorch 实现的 Layer Normalization 模块。Layer Normalization 是一种常用的神经网络正则化方法,与 Batch Normalization 相比,它不需要按批次计算均值和方差,而是在每个样本上计算均值和方差。它的实现方式是在每个神经元的输入上进行归一化,即将输入减去均值并除以方差。这个模块中,features 表示输入特征的数量,eps 是一个小的常数,用于防止方差为 0 的情况。 self.gamma 和 self.beta 分别是可学习的缩放因子和偏移因子,用于对归一化后的值进行缩放和平移。
阅读全文