import numpy as np import numpy.fft as fft import scipy.ndimage as nd import imageio import scipy.misc as misc from math import pi #Read in source image #source = nd.imread("einstein.bmp", flatten=True) source = imageio.imread("einstein.bmp", as_gray=True) #Pad image to simulate oversampling pad_len = len(source) padded = np.pad(source, ((pad_len, pad_len),(pad_len, pad_len)), 'constant', constant_values=((0,0),(0,0))) ft = fft.fft2(padded) #simulate diffraction pattern diffract = np.abs(ft) l = len(padded) #keep track of where the image is vs the padding mask = np.ones((pad_len+2,pad_len+2)) mask = np.pad(mask, ((pad_len-1, pad_len-1),(pad_len-1, pad_len-1)), 'constant', constant_values=((0,0),(0,0))) #Initial guess using random phase info guess = diffract * np.exp(1j * np.random.rand(l,l) * 2 * pi) #number of iterations r = 801 #step size parameter beta = 0.8 #previous result prev = None for s in range(0,r): #apply fourier domain constraints update = diffract * np.exp(1j * np.angle(guess)) inv = fft.ifft2(update) inv = np.real(inv) if prev is None: prev = inv #apply real-space constraints temp = inv for i in range(0,l): for j in range(0,l): #image region must be positive if inv[i,j] < 0 and mask[i,j] == 1: inv[i,j] = prev[i,j] - beta*inv[i,j] #push support region intensity toward zero if mask[i,j] == 0: inv[i,j] = prev[i,j] - beta*inv[i,j] prev = temp guess = fft.fft2(inv) #save an image of the progress if s % 10 == 0: #imageio.imsave("/Users/chasegoddard/Stuff/CDI/code/save/progress" + str(s) + # ".bmp", prev) imageio.imsave("C:/Users/Administrator/Desktop/仿真结果/结果" + str(s) + ".bmp", prev) print(s)
时间: 2024-04-18 10:27:09 浏览: 148
python 3.74 运行import numpy as np 报错lib\site-packages\numpy\__init__.py
这段代码是用于模拟计算机辅助衍射成像的过程。它使用了傅里叶变换和反傅里叶变换来处理图像。在代码中,首先读入源图像,然后对图像进行填充以模拟过采样。接下来,对填充后的图像进行傅里叶变换,得到衍射图样。然后,使用随机相位信息初始化重建图像的猜测,并使用一定的迭代次数和步长参数来逐步优化猜测。在每次迭代中,根据傅里叶域和实空间的约束条件,更新重建图像。最后,保存优化过程中的图像并打印迭代次数。
请问您有什么问题需要我解答吗?
阅读全文