遗传算法优化lightgbm的代码
时间: 2023-09-04 14:17:08 浏览: 185
遗传算法是一种优化算法,可以用来优化机器学习模型的超参数,如lightgbm的参数。下面是一个使用遗传算法优化lightgbm参数的示例代码:
```python
import lightgbm as lgb
import numpy as np
import random
# 定义参数空间
param_space = {
'boosting_type': ['gbdt', 'dart', 'goss'],
'num_leaves': list(range(20, 150)),
'max_depth': list(range(3, 15)),
'learning_rate': [0.01, 0.05, 0.1, 0.15, 0.2],
'n_estimators': [50, 100, 200, 300, 400, 500],
'min_child_samples': list(range(5, 50)),
'subsample': [0.6, 0.7, 0.8, 0.9, 1],
'colsample_bytree': [0.6, 0.7, 0.8, 0.9, 1]
}
# 定义遗传算法参数
POP_SIZE = 20 # 种群大小
CROSS_RATE = 0.8 # 交叉概率
MUTATION_RATE = 0.2 # 变异概率
N_GENERATIONS = 10 # 迭代次数
# 定义适应度函数
def fitness(estimator, X_train, y_train, X_valid, y_valid):
estimator.fit(X_train, y_train, eval_set=[(X_valid, y_valid)], early_stopping_rounds=50, verbose=False)
score = estimator.best_score_['valid_0']['rmse']
return score
# 初始化种群
pop = []
for i in range(POP_SIZE):
param = {}
for key in param_space:
param[key] = random.choice(param_space[key])
pop.append(param)
# 进化
for i in range(N_GENERATIONS):
# 计算适应度
scores = []
for param in pop:
estimator = lgb.LGBMRegressor(**param)
score = fitness(estimator, X_train, y_train, X_valid, y_valid)
scores.append(score)
# 选择
indices = np.argsort(scores)
pop = [pop[i] for i in indices[:int(POP_SIZE/2)]]
# 交叉
for i in range(int(POP_SIZE/2)):
if np.random.rand() < CROSS_RATE:
parent1 = pop[i]
parent2 = pop[np.random.randint(int(POP_SIZE/2), POP_SIZE)]
child1 = {}
child2 = {}
for key in param_space:
if np.random.rand() < 0.5:
child1[key] = parent1[key]
child2[key] = parent2[key]
else:
child1[key] = parent2[key]
child2[key] = parent1[key]
pop.append(child1)
pop.append(child2)
# 变异
for i in range(POP_SIZE):
if np.random.rand() < MUTATION_RATE:
param = pop[i]
key = random.choice(list(param_space.keys()))
param[key] = random.choice(param_space[key])
# 计算最优参数
scores = []
params = []
for param in pop:
estimator = lgb.LGBMRegressor(**param)
score = fitness(estimator, X_train, y_train, X_valid, y_valid)
scores.append(score)
params.append(param)
best_param = params[np.argmin(scores)]
print('Best params:', best_param)
```
在这个示例中,我们使用lightgbm建立回归模型,并使用RMSE作为适应度函数。我们定义了一个参数空间,其中包含了所有可能的参数取值。然后,我们使用遗传算法来搜索最优参数。我们初始化一个种群,然后迭代若干次,每次选择适应度最高的一半个体进行交叉和变异,得到新一代种群,最后计算最优参数。
阅读全文