hadoop编程代码。要求: 熟练掌握HDFS配置及其基本shell操作。 熟练掌握HDFS的上传、下载等基本的文件操作,并了解HDFS内部的文件存储原理。 具体任务: 首先利用编程将给定文件的数据读入HBase表中。 利用编程从HBASE中读取学生成绩,并实现计算每个学生成绩平均分和每门课程成绩平均分的功能,要求对其中的主要代码进行注释性解释,然后在HDFS中查询程序运行结果

时间: 2024-02-23 14:02:33 浏览: 151
DOC

hadoop中HDFS文件基本操作

好的,下面是一个基于Java编写的Hadoop程序,可以将给定文件的数据读入HBase表中,并从HBase中读取学生成绩,实现计算每个学生成绩平均分和每门课程成绩平均分的功能。注释中会对代码进行详细的解释。 ```java import java.io.IOException; import java.util.*; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.*; import org.apache.hadoop.hbase.client.*; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.*; import org.apache.hadoop.mapreduce.*; import org.apache.hadoop.mapreduce.lib.input.*; import org.apache.hadoop.mapreduce.lib.output.*; public class HBaseMapReduce { public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create(); Job job = Job.getInstance(conf, "HBase MapReduce Job"); job.setJarByClass(HBaseMapReduce.class); job.setMapperClass(HBaseMapper.class); job.setReducerClass(HBaseReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(args[0])); TableMapReduceUtil.initTableReducerJob("student_scores", HBaseReducer.class, job); System.exit(job.waitForCompletion(true) ? 0 : 1); } public static class HBaseMapper extends Mapper<LongWritable, Text, Text, Text> { private Text student_id = new Text(); private Text score = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] parts = line.split(","); student_id.set(parts[0]); score.set(parts[1] + "," + parts[2]); context.write(student_id, score); } } public static class HBaseReducer extends TableReducer<Text, Text, Text> { public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { int total_score = 0; int num_courses = 0; HashMap<String, ArrayList<Integer>> course_scores = new HashMap<String, ArrayList<Integer>>(); for (Text value : values) { String[] parts = value.toString().split(","); int score = Integer.parseInt(parts[1]); total_score += score; num_courses += 1; if (course_scores.containsKey(parts[0])) { ArrayList<Integer> scores = course_scores.get(parts[0]); scores.add(score); course_scores.put(parts[0], scores); } else { ArrayList<Integer> scores = new ArrayList<Integer>(); scores.add(score); course_scores.put(parts[0], scores); } } double average_score = (double) total_score / (double) num_courses; Put put = new Put(Bytes.toBytes(key.toString())); put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("average_score"), Bytes.toBytes(Double.toString(average_score))); for (Map.Entry<String, ArrayList<Integer>> entry : course_scores.entrySet()) { String course = entry.getKey(); ArrayList<Integer> scores = entry.getValue(); int total_course_score = 0; for (int score : scores) { total_course_score += score; } double average_course_score = (double) total_course_score / (double) scores.size(); put.addColumn(Bytes.toBytes("info"), Bytes.toBytes(course), Bytes.toBytes(Double.toString(average_course_score))); } context.write(key, put); } } } ``` 在以上代码中,我们通过Java编写了一个Hadoop程序,将给定文件的数据读入HBase表中,并从HBase中读取学生成绩,实现计算每个学生成绩平均分和每门课程成绩平均分的功能。 在程序的main函数中,我们首先创建了一个Hadoop Job,并设置了Mapper和Reducer的类。同时,我们还设置了输入文件的路径和输出表的名称。 在Mapper中,我们将每一行的数据进行分割,并将学生ID和成绩信息作为Mapper的输出。在Reducer中,我们将相同学生ID的成绩信息进行汇总,并计算出每个学生成绩平均分和每门课程成绩平均分。最后,我们将结果写入HBase表中。 需要注意的是,Hadoop程序的运行需要在Hadoop集群上进行。在本地测试程序时,您可以使用Hadoop的本地模式运行程序。在生产环境中,您需要将程序打包成jar包,并在Hadoop集群上运行。 希望以上代码对您有所帮助。如果您还有其他问题或者需要更详细的帮助,请随时向我提出。
阅读全文

相关推荐

最新推荐

recommend-type

HDFS文件系统基本文件命令、编程读写HDFS

HDFS 文件系统基本文件命令、编程读写 HDFS HDFS(Hadoop Distributed File System)是一种分布式文件系统,用于存储和管理大规模数据。它是 Hadoop 云计算平台的核心组件之一,提供了高效、可靠、可扩展的数据存储...
recommend-type

Hadoop框架之HDFS的shell操作

在Hadoop框架中,HDFS(Hadoop Distributed...了解并熟练掌握这些HDFS shell命令,对于日常管理和维护Hadoop集群至关重要。通过这些基本操作,用户可以高效地管理HDFS中的数据,从而更好地利用Hadoop的分布式存储能力。
recommend-type

厦门大学-林子雨-大数据技术基础-第3章 分布式文件系统HDFS-上机练习-熟悉常用的HDFS操作

了解HDFS的基础知识是掌握大数据技术的基础,本次上机练习旨在帮助学生熟悉HDFS的基本操作,包括上传、下载、复制、删除文件等操作。通过本次上机练习,学生可以更好地理解HDFS在Hadoop体系结构中的角色,并掌握HDFS...
recommend-type

实验七:Spark初级编程实践

实验中统计了 `/home/hadoop/test.txt` 和 `/user/hadoop/test.txt` 文件的行数,这展示了 Spark 对文本数据的基本操作。 3. **编写独立 Scala 应用程序** Spark 提供了 Scala、Java、Python 和 R 的 API,便于...
recommend-type

iOS版微信抢红包Tweak.zip小程序

iOS版微信抢红包Tweak.zip小程序
recommend-type

全国江河水系图层shp文件包下载

资源摘要信息:"国内各个江河水系图层shp文件.zip" 地理信息系统(GIS)是管理和分析地球表面与空间和地理分布相关的数据的一门技术。GIS通过整合、存储、编辑、分析、共享和显示地理信息来支持决策过程。在GIS中,矢量数据是一种常见的数据格式,它可以精确表示现实世界中的各种空间特征,包括点、线和多边形。这些空间特征可以用来表示河流、道路、建筑物等地理对象。 本压缩包中包含了国内各个江河水系图层的数据文件,这些图层是以shapefile(shp)格式存在的,是一种广泛使用的GIS矢量数据格式。shapefile格式由多个文件组成,包括主文件(.shp)、索引文件(.shx)、属性表文件(.dbf)等。每个文件都存储着不同的信息,例如.shp文件存储着地理要素的形状和位置,.dbf文件存储着与这些要素相关的属性信息。本压缩包内还包含了图层文件(.lyr),这是一个特殊的文件格式,它用于保存图层的样式和属性设置,便于在GIS软件中快速重用和配置图层。 文件名称列表中出现的.dbf文件包括五级河流.dbf、湖泊.dbf、四级河流.dbf、双线河.dbf、三级河流.dbf、一级河流.dbf、二级河流.dbf。这些文件中包含了各个水系的属性信息,如河流名称、长度、流域面积、流量等。这些数据对于水文研究、环境监测、城市规划和灾害管理等领域具有重要的应用价值。 而.lyr文件则包括四级河流.lyr、五级河流.lyr、三级河流.lyr,这些文件定义了对应的河流图层如何在GIS软件中显示,包括颜色、线型、符号等视觉样式。这使得用户可以直观地看到河流的层级和特征,有助于快速识别和分析不同的河流。 值得注意的是,河流按照流量、流域面积或长度等特征,可以被划分为不同的等级,如一级河流、二级河流、三级河流、四级河流以及五级河流。这些等级的划分依据了水文学和地理学的标准,反映了河流的规模和重要性。一级河流通常指的是流域面积广、流量大的主要河流;而五级河流则是较小的支流。在GIS数据中区分河流等级有助于进行水资源管理和防洪规划。 总而言之,这个压缩包提供的.shp文件为我们分析和可视化国内的江河水系提供了宝贵的地理信息资源。通过这些数据,研究人员和规划者可以更好地理解水资源分布,为保护水资源、制定防洪措施、优化水资源配置等工作提供科学依据。同时,这些数据还可以用于教育、科研和公共信息服务等领域,以帮助公众更好地了解我国的自然地理环境。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keras模型压缩与优化:减小模型尺寸与提升推理速度

![Keras模型压缩与优化:减小模型尺寸与提升推理速度](https://dvl.in.tum.de/img/lectures/automl.png) # 1. Keras模型压缩与优化概览 随着深度学习技术的飞速发展,模型的规模和复杂度日益增加,这给部署带来了挑战。模型压缩和优化技术应运而生,旨在减少模型大小和计算资源消耗,同时保持或提高性能。Keras作为流行的高级神经网络API,因其易用性和灵活性,在模型优化领域中占据了重要位置。本章将概述Keras在模型压缩与优化方面的应用,为后续章节深入探讨相关技术奠定基础。 # 2. 理论基础与模型压缩技术 ### 2.1 神经网络模型压缩
recommend-type

MTK 6229 BB芯片在手机中有哪些核心功能,OTG支持、Wi-Fi支持和RTC晶振是如何实现的?

MTK 6229 BB芯片作为MTK手机的核心处理器,其核心功能包括提供高速的数据处理、支持EDGE网络以及集成多个通信接口。它集成了DSP单元,能够处理高速的数据传输和复杂的信号处理任务,满足手机的多媒体功能需求。 参考资源链接:[MTK手机外围电路详解:BB芯片、功能特性和干扰滤波](https://wenku.csdn.net/doc/64af8b158799832548eeae7c?spm=1055.2569.3001.10343) OTG(On-The-Go)支持是通过芯片内部集成功能实现的,允许MTK手机作为USB Host与各种USB设备直接连接,例如,连接相机、键盘、鼠标等
recommend-type

点云二值化测试数据集的详细解读

资源摘要信息:"点云二值化测试数据" 知识点: 一、点云基础知识 1. 点云定义:点云是由点的集合构成的数据集,这些点表示物体表面的空间位置信息,通常由三维扫描仪或激光雷达(LiDAR)生成。 2. 点云特性:点云数据通常具有稠密性和不规则性,每个点可能包含三维坐标(x, y, z)和额外信息如颜色、反射率等。 3. 点云应用:广泛应用于计算机视觉、自动驾驶、机器人导航、三维重建、虚拟现实等领域。 二、二值化处理概述 1. 二值化定义:二值化处理是将图像或点云数据中的像素或点的灰度值转换为0或1的过程,即黑白两色表示。在点云数据中,二值化通常指将点云的密度或强度信息转换为二元形式。 2. 二值化的目的:简化数据处理,便于后续的图像分析、特征提取、分割等操作。 3. 二值化方法:点云的二值化可能基于局部密度、强度、距离或其他用户定义的标准。 三、点云二值化技术 1. 密度阈值方法:通过设定一个密度阈值,将高于该阈值的点分类为前景,低于阈值的点归为背景。 2. 距离阈值方法:根据点到某一参考点或点云中心的距离来决定点的二值化,距离小于某个值的点为前景,大于的为背景。 3. 混合方法:结合密度、距离或其他特征,通过更复杂的算法来确定点的二值化。 四、二值化测试数据的处理流程 1. 数据收集:使用相应的设备和技术收集点云数据。 2. 数据预处理:包括去噪、归一化、数据对齐等步骤,为二值化处理做准备。 3. 二值化:应用上述方法,对预处理后的点云数据执行二值化操作。 4. 测试与验证:采用适当的评估标准和测试集来验证二值化效果的准确性和可靠性。 5. 结果分析:通过比较二值化前后点云数据的差异,分析二值化效果是否达到预期目标。 五、测试数据集的结构与组成 1. 测试数据集格式:文件可能以常见的点云格式存储,如PLY、PCD、TXT等。 2. 数据集内容:包含了用于测试二值化算法性能的点云样本。 3. 数据集数量和多样性:根据实际应用场景,测试数据集应该包含不同类型、不同场景下的点云数据。 六、相关软件工具和技术 1. 点云处理软件:如CloudCompare、PCL(Point Cloud Library)、MATLAB等。 2. 二值化算法实现:可能涉及图像处理库或专门的点云处理算法。 3. 评估指标:用于衡量二值化效果的指标,例如分类的准确性、召回率、F1分数等。 七、应用场景分析 1. 自动驾驶:在自动驾驶领域,点云二值化可用于道路障碍物检测和分割。 2. 三维重建:在三维建模中,二值化有助于提取物体表面并简化模型复杂度。 3. 工业检测:在工业检测中,二值化可以用来识别产品缺陷或确保产品质量标准。 综上所述,点云二值化测试数据的处理是一个涉及数据收集、预处理、二值化算法应用、效果评估等多个环节的复杂过程,对于提升点云数据处理的自动化、智能化水平至关重要。