def plot_confusion_matrix(cm, classes, title='Confusion Matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')
时间: 2023-06-07 09:11:13 浏览: 354
这是一个绘制混淆矩阵的函数。混淆矩阵是一种衡量分类器性能的方法,通过计算真阳性、假阳性、真阴性和假阴性的数量,可以得到分类器的准确率、召回率等指标。在这个函数中,输入参数包括混淆矩阵对象、类别名称、标题、颜色映射等,函数会根据这些参数绘制一个混淆矩阵图,并且在每个格子里标注对应的数量。
相关问题
def plot_confusion_matrix(cm, classes, title='Confusion matrix', cmap=plt.cm.Blues, normalize=False):
该函数用于绘制混淆矩阵图,其中参数含义为:
- cm:混淆矩阵数组。
- classes:类别标签数组。
- title:图像标题。
- cmap:颜色映射。
- normalize:是否对混淆矩阵进行归一化处理。
具体实现代码如下:
```python
import matplotlib.pyplot as plt
import numpy as np
def plot_confusion_matrix(cm, classes, title='Confusion matrix', cmap=plt.cm.Blues, normalize=False):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
```
其中,还需导入 itertools 库。
解释这段代码def plot_confusion_matrix(cm, title='混淆矩阵', cmap=plt.cm.Blues, labels=[]): plt.figure(figsize=(8,8),dpi=600) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title,fontsize=15) plt.colorbar(fraction=0.045,pad=0.05) tick_marks = np.arange(len(labels)) ind_array = np.arange(len(classes)) x, y = np.meshgrid(ind_array, ind_array)
这段代码是用于绘制混淆矩阵的,用于评估分类模型的性能表现。其中,输入参数cm表示混淆矩阵,title表示图表标题,cmap表示颜色映射,labels表示类别标签。这段代码使用了matplotlib库和numpy库来完成图表绘制和数据处理。
阅读全文