生成对抗网络规划设计代码
时间: 2024-11-06 09:10:35 浏览: 10
基于Matlab实现生成对抗性网络仿真(源码+数据+说明文档).rar
5星 · 资源好评率100%
生成对抗网络(Generative Adversarial Networks, GANs)是一种深度学习模型,通常用于生成新的、逼真的数据样本。其设计包括两个主要部分:生成器(Generator)和判别器(Discriminator)。以下是简单的GAN设计代码概述,以Python和Keras库为例:
```python
# 导入所需库
from keras.layers import Input, Dense, Reshape, Flatten, Embedding
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam
# 定义生成器模型
def build_generator(latent_dim):
model = Sequential()
model.add(Dense(256 * 8 * 8, input_dim=latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(Reshape((8, 8, 256)))
model.add(Conv2DTranspose(128, (4, 4), strides=(2, 2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2DTranspose(64, (4, 4), strides=(2, 2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2DTranspose(1, (4, 4), activation='tanh', padding='same'))
noise = Input(shape=(latent_dim,))
img = model(noise)
return Model(noise, img)
# 定义判别器模型
def build_discriminator(img_shape):
model = Sequential()
model.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', input_shape=img_shape))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same'))
model.add(ZeroPadding2D(padding=((0,1),(0,1))))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
img = Input(shape=img_shape)
validity = model(img)
return Model(img, validity)
# 创建并训练GAN
generator = build_generator(latent_dim)
discriminator = build_discriminator(img_shape)
gan_input = Input(shape=(latent_dim,))
x = generator(gan_input)
gan_output = discriminator(x)
gan_model = Model(gan_input, gan_output)
gan_model.compile(optimizer=Adam(lr=0.0002, beta_1=0.5), loss='binary_crossentropy')
# 更详细的训练过程省略...
```
阅读全文