写一个yolov8 检测
时间: 2023-10-12 08:11:37 浏览: 85
很抱歉,YoloV8并不是一个已经存在的检测模型,可能是您想要使用的YOLOv3或YOLOv4。以下是YOLOv3的检测示例代码:
```python
import cv2
import numpy as np
# 导入YOLOv3模型和标签文件
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# 获取所有层的名称
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# 加载图像
img = cv2.imread("test.jpg")
# 获取图像的高度和宽度
height, width, channels = img.shape
# 预处理图像
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
# 将blob输入到YOLOv3模型中
net.setInput(blob)
# 执行前向传递以获取输出
outs = net.forward(output_layers)
# 初始化检测结果列表
class_ids = []
confidences = []
boxes = []
# 处理输出
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
# 检测到对象,计算边界框
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
# 将结果添加到列表中
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
# 应用非最大值抑制以去除重叠的检测结果
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# 绘制检测结果
font = cv2.FONT_HERSHEY_SIMPLEX
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = confidences[i]
color = (0, 255, 0)
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, label + " " + str(round(confidence, 2)), (x, y - 10), font, 0.5, color, 2)
# 显示结果
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
请注意,此代码需要YOLOv3的权重文件(`yolov3.weights`)和配置文件(`yolov3.cfg`),以及COCO数据集的标签文件(`coco.names`)。如果您使用的是YOLOv4,代码会有一些变化,但基本的思路是一样的。
阅读全文