optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)参数详解
时间: 2023-06-19 14:05:20 浏览: 149
`optim.lr_scheduler.StepLR` 是 PyTorch 中的一个学习率调度器,用于控制模型训练过程中学习率的变化。该调度器会在每个 `step_size` 个 epochs 后将学习率乘以 `gamma`,从而使得模型在训练过程中的学习率逐渐降低。
具体来说,`optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)` 中的参数含义如下:
- `optimizer_ft`:优化器对象,即将要被调整学习率的优化器。
- `step_size`:每隔多少个 epochs 调整一次学习率。
- `gamma`:将学习率乘以的因子。
例如,如果我们将 `step_size` 设为 7,`gamma` 设为 0.1,则模型的学习率会在第 7、14、21、28...个 epochs 后分别乘以 0.1,即逐渐降低。
相关问题
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) 用法
`scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)`的用法是创建一个学习率调度器(scheduler),用于在训练过程中动态调整优化器的学习率。
具体来说,这行代码使用`optim.lr_scheduler.StepLR`类创建了一个学习率调度器,其中参数包括:
- `optimizer`:优化器对象,如`torch.optim.SGD`或`torch.optim.Adam`等。
- `step_size`:学习率调整的步长,即经过多少个epoch后调整学习率。
- `gamma`:学习率调整的系数,即每次调整时将学习率乘以gamma。
使用这个学习率调度器后,在每个经过`step_size`个epoch之后,会将优化器的学习率乘以`gamma`进行调整。这样可以逐渐降低学习率,以便在训练过程中更好地收敛。
在训练过程中,你可以通过调用`scheduler.step()`方法来更新优化器的学习率。例如:
```python
import torch.optim as optim
# 创建优化器对象
optimizer = optim.SGD(model.parameters(), lr=0.1)
# 创建学习率调度器
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
# 在每个epoch中进行训练循环
for epoch in range(num_epochs):
# 执行训练步骤
train(...)
# 更新学习率
scheduler.step()
```
在上述代码中,我们首先创建了一个SGD优化器,并设置初始学习率为0.1。然后,我们创建了一个学习率调度器,将其与优化器关联起来。在每个epoch的训练循环中,我们先执行训练步骤,然后调用`scheduler.step()`来更新优化器的学习率。
通过这种方式,学习率将在每个经过10个epoch后乘以0.1,以实现动态调整学习率的效果。你可以根据自己的需求调整`step_size`和`gamma`参数来适应特定的训练任务。
scheduler = optim.lr_scheduler.StepLR(Optimizer, step_size=20, gamma=0.5)解释这行代码
这行代码是使用PyTorch的优化器(optimizer)和习率调度器(scheduler)来设置习率的变化规则。
首先`optim.lr_scheduler.StepLR`是PyTorch中的一个学习率调度器类。它基于给的步长(step_size)衰减因子(gamma)来调整学习率。
- `Optimizer`是您在代码中使用的优化器实例,比如`torch.optim.SGD`、`torch.optim.Adam`等。学习率调度器将根据优化器中的参数来调整学习率。
- `step_size`表示多少个epoch(训练周期)后进行学习率调整。在每个`step_size`个epoch之后,学习率将按照定义的规则进行变化。
- `gamma`表示学习率衰减因子,即每次调整学习率时将学习率乘以的衰减因子。
例如,如果您的优化器是`optimizer = torch.optim.SGD(model.parameters(), lr=0.1)`,并且您设置了`step_size=20`和`gamma=0.5`,那么在训练过程中,每隔20个epoch,学习率将被衰减为原来的0.5倍。
您可以使用`scheduler.step()`函数在每个epoch后手动更新学习率,或者将其与训练循环结合使用,例如:
```python
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
# 在训练循环中使用
for epoch in range(num_epochs):
# 执行训练步骤
# ...
# 更新学习率
scheduler.step()
```
阅读全文