torch.optim.lr_scheduler.StepLR
时间: 2023-10-31 09:55:31 浏览: 289
浅谈pytorch中torch.max和F.softmax函数的维度解释
`torch.optim.lr_scheduler.StepLR`是PyTorch中的一个学习率调整器(learning rate scheduler)。它在训练过程中根据预先定义的步数来动态地调整学习率。
该调度器按照给定的步长调整学习率。具体而言,每经过一定数量的epoch或迭代次数,学习率都会按照给定的衰减因子进行缩小。
以下是使用`StepLR`的示例代码:
```python
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
# 定义优化器和初始学习率
optimizer = optim.SGD(model.parameters(), lr=0.1)
# 定义学习率调整器
scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
# 在训练循环中更新学习率
for epoch in range(num_epochs):
train(...)
validate(...)
scheduler.step()
```
在上面的示例中,`step_size`参数指定了多少个epoch或迭代次数后需要进行学习率调整,`gamma`参数指定了调整系数,即学习率缩小的倍数。
希望以上的解释对你有所帮助!如果你还有其他问题,请随时提问。
阅读全文