def RotatE(self, head, relation, tail, mode): # RotatE模型实现 pi = 3.14159265358979323846 # head: (1024,1,2000) tail: (1024,1,2000) relation: (1024,256,1000) re_head, im_head = torch.chunk(head, 2, dim=2) # 分块 实数域和复数域 re_tail, im_tail = torch.chunk(tail, 2, dim=2) # Make phases of relations uniformly distributed in [-pi, pi] 关系嵌入的相位在[-pi, pi]之间均匀初始化 # 关系的复数通过欧拉方程实现 cos(θ) + isin(θ) 这样可以限定关系的模长为1 phase_relation = relation/(self.embedding_range.item()/pi) # 一个trick,目的应该是把实体和关系拉齐到同一级别(由于关系这里进行了cos/sin计算) re_relation = torch.cos(phase_relation) # cos(θ) im_relation = torch.sin(phase_relation) # sin(θ) if mode == 'head-batch': re_score = re_relation * re_tail + im_relation * im_tail im_score = re_relation * im_tail - im_relation * re_tail re_score = re_score - re_head im_score = im_score - im_head else: re_score = re_head * re_relation - im_head * im_relation im_score = re_head * im_relation + im_head * re_relation re_score = re_score - re_tail im_score = im_score - im_tail score = torch.stack([re_score, im_score], dim = 0) # score: tensor(2,1024,256,1000) score = score.norm(dim = 0) # 二范数 score: tensor(1024,256,1000) score = self.gamma.item() - score.sum(dim = 2) # score: tensor(1024,256) return score解释
时间: 2024-04-28 14:26:34 浏览: 164
2-第二章:关系数据模型(1).pdf
这段代码实现了RotatE模型,用于知识图谱中的关系预测。该模型主要通过将实体和关系表示为复数向量,并将关系的相位初始化为[-pi,pi]之间的均匀分布,限制关系的模长为1。在得到实体、关系的复数向量后,根据不同的模式('head-batch'或'tail-batch')计算得出分数,并将其转换为二范数,最终得到模型的输出。其中,gamma是一个可学习的参数,用于调整分数的大小。
阅读全文