疲劳驾驶检测python行为记录
时间: 2023-10-17 09:34:14 浏览: 157
可以使用Python来记录疲劳驾驶的行为。下面是一个简单的示例代码:
```python
import cv2
import dlib
from scipy.spatial import distance
def calculate_eye_aspect_ratio(eye):
# 计算眼睛纵横比
A = distance.euclidean(eye[1], eye[5])
B = distance.euclidean(eye[2], eye[4])
C = distance.euclidean(eye[0], eye[3])
ear = (A + B) / (2.0 * C)
return ear
# 加载人脸检测器和眼睛检测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# 设置阈值,判断疲劳驾驶
EYE_AR_THRESH = 0.3
EYE_AR_CONSEC_FRAMES = 48
# 初始化帧计数器和疲劳状态
COUNTER = 0
ALARM_ON = False
# 通过视频流逐帧检测疲劳驾驶行为
video_capture = cv2.VideoCapture(0)
while True:
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 检测人脸
faces = detector(gray, 0)
for face in faces:
# 识别人脸特征点
shape = predictor(gray, face)
shape = shape_to_np(shape)
# 提取左眼和右眼坐标
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
# 计算眼睛纵横比
leftEAR = calculate_eye_aspect_ratio(leftEye)
rightEAR = calculate_eye_aspect_ratio(rightEye)
# 计算平均纵横比
ear = (leftEAR + rightEAR) / 2.0
# 检测是否闭眼
if ear < EYE_AR_THRESH:
COUNTER += 1
if COUNTER >= EYE_AR_CONSEC_FRAMES:
if not ALARM_ON:
ALARM_ON = True
# 触发疲劳驾驶警报,例如播放声音、发送警报等
print("疲劳驾驶警报")
# 在视频中标记疲劳驾驶
cv2.putText(frame, "DROWSINESS ALERT!", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
COUNTER = 0
ALARM_ON = False
# 显示视频流
cv2.imshow("Frame", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 清理资源
video_capture.release()
cv2.destroyAllWindows()
```
这段代码使用dlib库进行人脸检测和眼睛检测,通过计算眼睛的纵横比来判断是否闭眼从而检测疲劳驾驶行为。当闭眼帧连续达到一定阈值时,会触发疲劳驾驶警报。你可以根据实际需求对代码进行修改和优化。需要注意的是,该代码只是一个简单的示例,实际应用中可能需要更多的处理和优化。
阅读全文