编写程序,用牛顿迭代法求高次方程f(x)=5x5-8x3+10x2-7x+25=0的近似根。算法描述:从键盘输入任意一个值x0,用牛顿迭代公式x1=x0-f(x0)/f’(x0)可以得到一个更加接近根

时间: 2023-06-05 12:47:31 浏览: 180
这是一道要求用牛顿迭代法求解方程5x5-8x3+10x2-7x+25=0的近似根的问题。具体的算法描述是:从键盘输入任意一个值x0,用牛顿迭代公式f(x1) = x0 - f(x0)/f'(x0) 得到一个更接近方程根的近似根x1。这样不断用新的x1替代x0,再代入公式中迭代,就可以得到越来越接近方程根的近似根了。
相关问题

用下列方法求方程e^x+10x-2=0的近似根,要求误差不超过1/2*10^(-3) (1)在区间[0,1]上用二分法; (2)初值x0=0,简单迭代法xk+1=2-e^xk/10(k=0,1,2,); (3)初值x0=0,牛顿迭代法;

(1) 在区间[0,1]上用二分法: 首先将区间[0,1]分成两半,取中点x1=0.5,计算f(x1)=e^0.5+10*0.5-2≈9.45,由于f(x1)>0,所以方程的根在区间[0,0.5]内。接下来将区间[0,0.5]分成两半,取中点x2=0.25,计算f(x2)=e^0.25+10*0.25-2≈-0.731,由于f(x2)<0,所以方程的根在区间[0.25,0.5]内。依此类推,可以得到下表: | 迭代次数k | 左端点a | 右端点b | 中点xk | f(xk) | | ------------ | ----------- | ----------- | ----------- | ----------- | | 0 | 0 | 1 | 0.5 | 9.45 | | 1 | 0.25 | 0.5 | 0.375 | -0.166 | | 2 | 0.25 | 0.375 | 0.3125 | -0.285 | | 3 | 0.3125 | 0.375 | 0.34375 | -0.060 | | 4 | 0.34375 | 0.375 | 0.359375 | 0.054 | | 5 | 0.34375 | 0.359375 | 0.3515625 | -0.004 | | 6 | 0.3515625 | 0.359375 | 0.3554688 | 0.025 | | 7 | 0.3515625 | 0.3554688 | 0.3535156 | 0.010 | | 8 | 0.3515625 | 0.3535156 | 0.3525391 | 0.003 | | 9 | 0.3515625 | 0.3525391 | 0.3520508 | -0.0005 | 根据迭代结果可知,方程的近似根为x=0.352,误差不超过1/2*10^(-3)。 (2) 初值x0=0,简单迭代法xk+1=2-e^xk/10(k=0,1,2,...): 根据简单迭代法的公式,代入初值x0=0,可以得到: x1=2-e^0/10=1.9 x2=2-e^1.9/10≈0.918 x3=2-e^0.918/10≈1.770 x4=2-e^1.770/10≈0.993 x5=2-e^0.993/10≈1.697 x6=2-e^1.697/10≈1.068 x7=2-e^1.068/10≈1.783 x8=2-e^1.783/10≈0.961 x9=2-e^0.961/10≈1.732 依此类推,可以进行迭代计算,直到满足误差不超过1/2*10^(-3)的要求。根据迭代结果可知,方程的近似根为x=1.732,误差不超过1/2*10^(-3)。 (3) 初值x0=0,牛顿迭代法: 根据牛顿迭代法的公式,可以得到: xk+1=xk-f(xk)/f'(xk) 对于方程f(x)=e^x+10x-2=0,可以求出其导数f'(x)=e^x+10。代入初值x0=0,可以得到: x1=0-[(e^0+10*0-2)/(e^0+10)]=0.2 x2=0.2-[(e^0.2+10*0.2-2)/(e^0.2+10)]=0.297 x3=0.297-[(e^0.297+10*0.297-2)/(e^0.297+10)]=0.344 x4=0.344-[(e^0.344+10*0.344-2)/(e^0.344+10)]=0.354 x5=0.354-[(e^0.354+10*0.354-2)/(e^0.354+10)]=0.352 x6=0.352-[(e^0.352+10*0.352-2)/(e^0.352+10)]=0.352 依此类推,可以进行迭代计算,直到满足误差不超过1/2*10^(-3)的要求。根据迭代结果可知,方程的近似根为x=0.352,误差不超过1/2*10^(-3)。

用迭代法计算方程 x^3-x-1=0 在x=1.5附近的根,要求误差: s10^-9

答案:使用牛顿迭代法,设初始值为x0=1.5,迭代公式为xn+1 = xn - f(xn)/f'(xn),其中f(x) = x^3 - x - 1,f'(x) = 3x^2 - 1。根据迭代公式,可以得到以下迭代过程: x1 = x0 - f(x0)/f'(x0) = 1.5 - (1.5^3 - 1.5 - 1)/(3*1.5^2 - 1) ≈ 1.324717957 x2 = x1 - f(x1)/f'(x1) = 1.324717957 - (1.324717957^3 - 1.324717957 - 1)/(3*1.324717957^2 - 1) ≈ 1.220744084 x3 = x2 - f(x2)/f'(x2) = 1.220744084 - (1.220744084^3 - 1.220744084 - 1)/(3*1.220744084^2 - 1) ≈ 1.167303978 x4 = x3 - f(x3)/f'(x3) = 1.167303978 - (1.167303978^3 - 1.167303978 - 1)/(3*1.167303978^2 - 1) ≈ 1.147231724 x5 = x4 - f(x4)/f'(x4) = 1.147231724 - (1.147231724^3 - 1.147231724 - 1)/(3*1.147231724^2 - 1) ≈ 1.145366891 x6 = x5 - f(x5)/f'(x5) = 1.145366891 - (1.145366891^3 - 1.145366891 - 1)/(3*1.145366891^2 - 1) ≈ 1.145365385 x7 = x6 - f(x6)/f'(x6) = 1.145365385 - (1.145365385^3 - 1.145365385 - 1)/(3*1.145365385^2 - 1) ≈ 1.145365385 x8 = x7 - f(x7)/f'(x7) = 1.145365385 - (1.145365385^3 - 1.145365385 - 1)/(3*1.145365385^2 - 1) ≈ 1.145365385 因此,方程 x^3-x-1=0 在x=1.5附近的根约为1.145365385,误差小于s10^-9。
阅读全文

相关推荐

大家在看

recommend-type

148基于STM32设计的校园一卡通-手机APP源码.zip

这是 《基于STM32设计的校园一卡通(设计配套的手机APP)》 项目的Qt上位机上位机源码包。 这是一个Qt工程,采用QT5.12.6版本开发的源码。、支持生成Windows系统运行程序。也支持生成Android手机APP。 对应项目的博客链接:https://blog.csdn.net/xiaolong1126626497/article/details/132974417 注意 注意 注意!!!: 如果不需要修改上位机源码,就不用下载本资源 (本项目的STM32源码包里就包含了上位机APP安装包,可以直接使用),在设计文档里也写了上位机的核心代码。 如果想学习本项目的上位机开发,学习上位机的源码,修改源。那么可以下载。 最好自己具备一定的Qt开发基础。
recommend-type

quartus下实现TDC,有博客内容介绍,使用verilog语言实现。

verilog实现TDC,高精度时间数字转换器,quartus下实现TDC,有博客内容介绍,使用verilog语言实现。
recommend-type

2023年电工杯B人工智能对大学生学习影响的评价

博主个人作品,版权所有,请勿二次上传,可以用来参考学习。 近年来,人工智能技术不断发展,其对大学生学习产生了广泛影响。本文采用量表、 独热编码等方法对问卷数据进行数值化处理,并通过建立 K-means 聚类模型、相关性 分析及机器学习分类器来筛选评价指标体系,以量化人工智能对大学生学习的影响。 针对问题一,先对原始数据进行统计分析,可视化与方差分析,并发现有 93.2%的 大学生希望积极利用人工智能工具来提升学习成绩。针对单选分类问题,使用标签编码 处理。对于人工智能接受适应程度等指标,则采用量表法进行数值量化。而对于多选问 题,我们通过选项统计计算以及独热编码等方式进行数值化。由于部分问卷样本存在选 项不合理的情况,导致问卷数据信度较低。因此,采用 KS 检验、箱线图分析等方法对 量化指标进行异常值分析,并得到处理后问卷信度值达 0.76,远高于处理前的 0.33。接 着,对量化数据进行描述性统计分析,发现学生对人工智能平均接受程度为 2.89,表明 大部分学生愿意接受人工智能工具。
recommend-type

全民所有自然资源资产清查技术指南(试行稿)公开版pdf

全民所有自然资源资产清查技术指南(试行稿)公开版
recommend-type

STM32F103C8T6核心板原理图+PCB非常好可以直接打板生产.zip

STM32F103C8T6核心板原理图+PCB非常好可以直接打板生产.zip

最新推荐

recommend-type

C语言:用牛顿迭代法求方程在1.5附近的根:2x^3-4x^2+3x-6=0.

在给定的C语言代码中,我们看到牛顿迭代法被用来求解三次方程 `2x^3 - 4x^2 + 3x - 6 = 0` 在1.5附近的根。 牛顿迭代法的基本步骤如下: 1. **选择初始值**:首先需要一个近似根的初始估计值,这里的初始值是 `i=...
recommend-type

Java源码ssm框架医院预约挂号系统-毕业设计论文-期末大作业.rar

本项目是一个基于Java源码的SSM框架医院预约挂号系统,旨在利用现代信息技术优化医院的挂号流程,提升患者就医体验。系统采用了Spring、Spring MVC和MyBatis三大框架技术,实现了前后端的分离与高效交互。主要功能包括用户注册与登录、医生信息查询、预约挂号、挂号记录查看以及系统管理等。用户可以通过系统便捷地查询医生的专业背景和出诊时间,并根据自己的需求进行预约挂号,避免了长时间排队等候的不便。系统还提供了完善的挂号记录管理,用户可以随时查看自己的预约情况,确保就医计划的顺利执行。此外,系统管理模块支持管理员对医生信息和挂号数据进行维护和管理,确保系统的稳定运行和数据的准确性。该项目不仅提升了医院的运营效率,也为患者提供了更加便捷的服务体验。项目为完整毕设源码,先看项目演示,希望对需要的同学有帮助。
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【热传递模型的终极指南】:掌握分类、仿真设计、优化与故障诊断的18大秘诀

![热传递模型](https://study.com/cimages/videopreview/radiation-heat-transfer-the-stefan-boltzmann-law_135679.png) # 摘要 热传递模型在工程和物理学中占有重要地位,对于提高热交换效率和散热设计至关重要。本文系统性地介绍了热传递模型的基础知识、分类以及在实际中的应用案例。文章详细阐述了导热、对流换热以及辐射传热的基本原理,并对不同类型的热传递模型进行了分类,包括稳态与非稳态模型、一维到三维模型和线性与非线性模型。通过仿真设计章节,文章展示了如何选择合适的仿真软件、构建几何模型、设置材料属性和
recommend-type

python经典题型和解题代码

Python的经典题型通常涵盖了基础语法、数据结构、算法、函数式编程、文件操作、异常处理以及网络爬虫等内容。以下是一些常见的题目及其简单示例: 1. **基础题**: - 示例:打印九九乘法表 ```python for i in range(1, 10): print(f"{i} * {i} = {i*i}") ``` 2. **数据结构**: - 示例:实现队列(使用列表) ```python class Queue: def __init__(self):