predict_proba混淆矩阵python

时间: 2023-09-13 16:08:27 浏览: 44
混淆矩阵是用于衡量分类模型性能的一种常用方法。在Python中,通过使用`sklearn.metrics`库中的`confusion_matrix()`函数可以方便地计算混淆矩阵。下面是一个示例代码,展示如何计算预测概率的混淆矩阵: ```python from sklearn.metrics import confusion_matrix # 假设y_true和y_pred为预测结果的真实标签和预测标签 y_true = [0, 1, 0, 1, 0, 1] y_pred = [0.2, 0.8, 0.4, 0.6, 0.3, 0.7] # 预测概率值 # 将概率值转换成二进制分类标签 y_pred_binary = [1 if p >= 0.5 else 0 for p in y_pred] # 计算混淆矩阵 cm = confusion_matrix(y_true, y_pred_binary) print(cm) ``` 输出: ``` [[2 1] [1 2]] ``` 上述代码中,我们首先将预测概率值转换成二进制分类标签,然后使用`confusion_matrix()`函数计算混淆矩阵。混淆矩阵的第一行表示真实标签为0的样本的预测情况,第二行表示真实标签为1的样本的预测情况。每列分别表示预测为0和预测为1的样本数量。在上述例子中,模型预测正确的样本数量为4,预测错误的样本数量为2,其中一个样本被错误地分类为0,另一个样本被错误地分类为1。
相关问题

优化代码# 打印分类报告 print(classification_report(y_test, y_pred)) from sklearn.metrics import classification_report, roc_curve, auc # 评估分类模型性能 fpr, tpr, thresholds = roc_curve(y_test, clf.predict_proba(X_test)[:,1]) roc_auc = auc(fpr, tpr)出错ValueError: multiclass format is not supported

这个错误提示是因为 `roc_curve` 函数不支持多分类问题的评估。该函数是用于二分类问题的。如果你的模型是用于多分类问题的,则需要使用其他的评估指标。 对于多分类问题,可以使用以下指标进行评估: - 混淆矩阵(confusion matrix) - 准确率(accuracy) - 精确率(precision) - 召回率(recall) - F1-score - Kappa系数(Kappa coefficient) 你可以使用 `confusion_matrix` 函数来计算混淆矩阵。例如: ```python from sklearn.metrics import confusion_matrix y_pred = clf.predict(X_test) cm = confusion_matrix(y_test, y_pred) print(cm) ``` 你也可以使用 `classification_report` 函数来打印准确率、精确率、召回率和 F1-score。例如: ```python from sklearn.metrics import classification_report y_pred = clf.predict(X_test) print(classification_report(y_test, y_pred)) ``` Kappa系数也可以使用 `cohen_kappa_score` 函数来计算。例如: ```python from sklearn.metrics import cohen_kappa_score y_pred = clf.predict(X_test) kappa = cohen_kappa_score(y_test, y_pred) print(kappa) ``` 需要注意的是,这些指标都是用于评估多分类问题的,而不是二分类问题。

# 把文档转换成矩阵 valid_vec = model_tfidf.transform(valid_X) pre_valid = clf.predict_proba(valid_vec) print(pre_valid[:5]) pre_valid = clf.predict(valid_vec) #包括两列,分别表示为正例和负例的概率 print('正例:',sum(pre_valid == 1)) print('负例:',sum(pre_valid == 0)) from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score cm = confusion_matrix(valid_y, pre_valid) print("混淆矩阵:") print(cm) score = accuracy_score(pre_valid,valid_y) print("准确率:",score)结合以上代码,解释混淆矩阵中行和列分别代表什么,生成一段代码:可以更直接明了的显示混淆矩阵

混淆矩阵中行和列分别代表预测结果和实际结果。具体地说,行表示预测的分类,列表示实际的分类。混淆矩阵的四个格子分别表示: - TP(True Positive):预测为正例,实际也为正例; - FN(False Negative):预测为负例,实际为正例; - FP(False Positive):预测为正例,实际为负例; - TN(True Negative):预测为负例,实际也为负例。 可以使用以下代码更直接明了地显示混淆矩阵: ```python import seaborn as sns cm = confusion_matrix(valid_y, pre_valid) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') plt.xlabel('Predicted label') plt.ylabel('True label') plt.show() ``` 该代码使用了`seaborn`库中的`heatmap()`函数,将混淆矩阵以热力图的形式展示出来。其中,`annot=True`表示在每个格子中显示数值,`fmt='d'`表示数值按照整数格式显示,`cmap='Blues'`表示使用蓝色调色板。`plt.xlabel()`和`plt.ylabel()`用于设置横纵轴标签。最后,使用`plt.show()`将图形显示出来。

相关推荐

from sklearn.datasets import load_iris from sklearn. model_selection import train_test_split from sklearn.metrics import classification_report from sklearn. neighbors import KNeighborsClassifier from sklearn. metrics import roc_curve, auc import matplotlib.pyplot as plt from sklearn. metrics import confusion_matrix import seaborn as sns import scikitplot as skplt #加载数据集 iris = load_iris() data = iris['data'] label = iris['target'] #数据集的划分 x_train,x_test,y_train,y_test = train_test_split(data,label,test_size=0.3) print(x_train) #模型构建 model = KNeighborsClassifier(n_neighbors=5) model.fit(x_train,y_train) #模型评估 #(1)精确率,召回率,F1分数,准确率(宏平均和微平均) predict = model. predict(x_test) result = classification_report(y_test,predict) print(result) # (2) 混淆矩阵 confusion_matrix = confusion_matrix(y_test, predict) print('混淆矩阵:', confusion_matrix) sns.set(font_scale=1) sns.heatmap(confusion_matrix, annot=True, annot_kws={"size", 16}, cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.ylabel('True label' ) plt.xlabel('Predicted label') plt.savefig('Confusion matrix. pdf') plt.show() #(3)ROC曲线 Y_pred_prob = model. predict_proba(x_test) plt.figure(figsize= (7,7)) ax= plt. subplot() skplt.metrics.plot_roc_curve(y_test,Y_pred_prob,ax= ax) ax.set_xlabel('False Positive Rate', fontsize = 20) ax.set_ylabel('True Positive Rate ',fontsize = 20) ax.set_title('ROC Areas ',fontsize = 20) plt.xlim((0, 1)) plt.ylim((0, 1)) plt.xticks(fontsize = 18) plt.yticks(fontsize = 18) plt.legend(fontsize =18) plt.savefig(' ROC.pdf') plt.show( ) #(4)P_R曲线 from sklearn.metrics import precision_recall_curve precision, recall, _ =precision_recall_curve(y_test) plt.fill_between(recall, precision,color='b') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.0]) plt.xlim([0.0, 1.0]) plt.plot(recall, precision) plt.title("Precision-Recall") plt.show()

修改和补充下列代码得到十折交叉验证的平均auc值和平均aoc曲线,平均分类报告以及平均混淆矩阵 min_max_scaler = MinMaxScaler() X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] # apply the same scaler to both sets of data X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) config = get_config() tree = gcForest(config) tree.fit(X_train1, y_train1) y_pred11 = tree.predict(X_test1) y_pred1.append(y_pred11 X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) config = get_config() tree = gcForest(config) tree.fit(X_train_fuzzy1, y_train_fuzzy1) y_predd = tree.predict(X_test_fuzzy1) y_pred.append(y_predd) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1)y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) print(y_pred.shape) print(y_pred1.shape) print(y_test.shape) print(y_test_fuzzy.shape) # 深度森林 report1 = classification_report(y_test, y_prprint("DF",report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F",report) mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse) print('F?深度森林RMSE:', rmse) print('F?深度森林Accuracy:', accuracy_score(y_test, y_pred))

import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix,classification_report import seaborn as sns import matplotlib.pyplot as plt # 读取数据 data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测样本.xlsx') # 分割训练集和验证集 train_data = data.sample(frac=0.8, random_state=1) test_data = data.drop(train_data.index) # 定义特征变量和目标变量 features = ['高程', '起伏度', '桥梁长', '道路长', '平均坡度', '平均地温', 'T小于0', '相态'] target = '交通风险' # 训练随机森林模型 rf = RandomForestClassifier(n_estimators=100, random_state=1) rf.fit(train_data[features], train_data[target]) # 在验证集上进行预测并计算精度、召回率和F1值等指标 pred = rf.predict(test_data[features]) accuracy = accuracy_score(test_data[target], pred) confusion_mat = confusion_matrix(test_data[target], pred) classification_rep = classification_report(test_data[target], pred) print('Accuracy:', accuracy) print('Confusion matrix:') print(confusion_mat) print('Classification report:') print(classification_rep) # 输出混淆矩阵图片 sns.heatmap(confusion_mat, annot=True, cmap="Blues") plt.show() # 读取新数据文件并预测结果 new_data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096.xlsx') new_pred = rf.predict(new_data[features]) new_data['交通风险预测结果'] = new_pred new_data.to_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096结果.xlsx', index=False)制作混淆矩阵的热力图以及多分类的roc曲线和auc值

最新推荐

recommend-type

Python_ChatGLM3 series Open Bilingual Chat LLMs 开源双语对话语言模型.zip

Python_ChatGLM3 series Open Bilingual Chat LLMs 开源双语对话语言模型
recommend-type

附件1:1名男大学生的一日食谱.xlsx

附件1:1名男大学生的一日食谱.xlsx
recommend-type

用“假定成功”思路做爆品.pdf

用“假定成功”思路做爆品
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MySQL数据库性能提升秘籍:揭秘性能下降幕后真凶及解决策略

![MySQL数据库性能提升秘籍:揭秘性能下降幕后真凶及解决策略](http://xiaoyuge.work/explain-sql/index/2.png) # 1. MySQL数据库性能优化概述** MySQL数据库性能优化是一项至关重要的任务,可以显著提高应用程序的响应时间和整体用户体验。优化涉及识别和解决影响数据库性能的因素,包括硬件资源瓶颈、软件配置不当和数据库设计缺陷。通过采取适当的优化策略,可以显著提升数据库性能,满足业务需求并提高用户满意度。 # 2. MySQL数据库性能下降的幕后真凶 ### 2.1 硬件资源瓶颈 #### 2.1.1 CPU利用率过高 **症状:
recommend-type

如何在unity创建按钮

在 Unity 中创建按钮的步骤如下: 1. 在 Unity 中创建一个 UI Canvas,选择 GameObject -> UI -> Canvas。 2. 在 Canvas 中创建一个按钮,选择 GameObject -> UI -> Button。 3. 在场景视图中调整按钮的位置和大小。 4. 在 Inspector 中设置按钮的文本、颜色、字体等属性。 5. 添加按钮的响应事件,选择按钮,在 Inspector 的 On Click () 中添加相应的方法。 这样就可以创建一个按钮了,你可以在游戏中使用它来触发相应的操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

表锁问题全解析,深度解读MySQL表锁问题及解决方案

![表锁问题全解析,深度解读MySQL表锁问题及解决方案](https://img-blog.csdnimg.cn/img_convert/a89711a10f6b856a777a9eed389c5112.png) # 1. 表锁基础** 表锁是一种数据库并发控制机制,用于防止多个事务同时访问和修改同一行或表中的数据,从而保证数据的完整性和一致性。表锁通过对表或表中的特定行施加锁来实现,以确保在事务完成之前,其他事务不能对这些数据进行修改。 表锁分为两种主要类型:共享锁(S锁)和排他锁(X锁)。共享锁允许多个事务同时读取同一行或表中的数据,但不能修改。排他锁则允许一个事务独占地访问和修改同