构建AdaBoostClassifier,并完成训练,输出X_test上的预测结果(分类结果、概率结果),输出混淆矩阵以及预测数据上正确率。
时间: 2023-12-10 07:38:18 浏览: 69
好的,下面是代码实现:
```python
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import confusion_matrix, accuracy_score
# 构建AdaBoostClassifier模型
ada = AdaBoostClassifier()
# 训练模型
ada.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = ada.predict(X_test)
y_pred_proba = ada.predict_proba(X_test)
# 输出分类结果和概率结果
print("Classification Results:")
print(y_pred)
print("Probability Results:")
print(y_pred_proba)
# 输出混淆矩阵和正确率
cm = confusion_matrix(y_test, y_pred)
accuracy = accuracy_score(y_test, y_pred)
print("Confusion Matrix:")
print(cm)
print("Accuracy:")
print(accuracy)
```
需要注意的是,上述代码中的X_train, y_train, X_test, y_test应该是已经经过处理的训练集和测试集数据。
相关问题
#构建AdaBoostClassifier,并完成训练,输出X_test上的预测结果(分类结果、概率结果),输出混淆矩阵以及预测数据上正确率。
好的,首先我们需要导入必要的库和数据集。我使用的是sklearn自带的鸢尾花数据集。
``` python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import confusion_matrix, accuracy_score
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```
接下来,我们构建一个AdaBoostClassifier并训练它。
``` python
model = AdaBoostClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
```
现在我们可以用模型对测试数据集进行预测,并输出预测结果和概率结果。
``` python
y_pred = model.predict(X_test)
y_pred_proba = model.predict_proba(X_test)
print("分类结果:", y_pred)
print("概率结果:", y_pred_proba)
```
接下来,我们可以通过混淆矩阵来评估模型的性能。
``` python
confusion = confusion_matrix(y_test, y_pred)
print("混淆矩阵:\n", confusion)
```
最后,我们可以计算模型在测试数据集上的准确率。
``` python
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)
```
完整代码如下:
``` python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import confusion_matrix, accuracy_score
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
model = AdaBoostClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
y_pred_proba = model.predict_proba(X_test)
print("分类结果:", y_pred)
print("概率结果:", y_pred_proba)
confusion = confusion_matrix(y_test, y_pred)
print("混淆矩阵:\n", confusion)
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)
```
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)