代码 unsigned char* ReadDataSar = (unsigned char*)malloc(BUFFER_SIZE1); uint16_t* dataReadDataSar = (uint16_t*)malloc(BUFFER_SIZE1); free(ReadDataSar); free(dataReadDataSar); 有什么错误
时间: 2024-04-01 17:36:13 浏览: 87
这段代码本身没有错误。它的作用是:使用 `malloc` 分配 `BUFFER_SIZE1` 大小的内存,并将其强制转换为 `unsigned char*` 类型的指针 `ReadDataSar` 和 `uint16_t*` 类型的指针 `dataReadDataSar`。然后,使用 `free` 释放这些内存。
需要注意的是,这段代码可能存在内存泄漏的风险,如果在分配内存之后没有正确地释放内存,可能会导致程序运行时内存泄漏,导致程序运行缓慢或崩溃。所以,需要在程序的其他地方使用这些指针之前,确认已经正确地释放了它们所分配的内存。
相关问题
int main(int argc, char* argv[]) { string inputFileName = "..\\testData\\temp2.dat"; string outputFileName = inputFileName; FILE* pf = NULL; unsigned char * datBuffer = NULL; unsigned char * imageBuffer = NULL; int inputWidth = 2560; int inputHeight = 2560; int i = 0, j = 0; int indexX = 0, indexY = 0; unsigned short tempPixel = 0; unsigned char tempByte; GDALDriver* pDriver = NULL; GDALDataset* pDs = NULL; char **papszOptions = NULL; char szFormat[16]; GDALDataType nDataType; GDALAllRegister(); datBuffer = (unsigned char *)malloc(inputWidth*inputHeight * 2); imageBuffer = (unsigned char *)malloc(inputWidth *inputHeight * 2); pf = fopen(inputFileName.c_str(), "rb"); fread(datBuffer, 1, inputWidth*inputHeight * 2, pf); fclose(pf); for (i = 0; i < inputHeight; i++) { for (j = 0; j < inputWidth; j++) { indexX = i; indexY = j; ////左右翻转 //indexX = i; //indexY = inputWidth -1 -j; //取一个像素 tempByte = *(datBuffer + (i*inputWidth + j) * 2); tempPixel = tempByte << 8; tempByte = *(datBuffer + (i*inputWidth + j) * 2 + 1); tempPixel += tempByte; tempPixel = tempPixel >> 6; //写回像素,低字节在前 *(imageBuffer + (indexX*inputWidth + indexY) * 2) = tempPixel & 0xFF; *(imageBuffer + (indexX*inputWidth + indexY) * 2 + 1) = (tempPixel & 0xFF00) >> 8; } } //写为文件 outputFileName = inputFileName + ".test.tiff"; papszOptions = CSLAddString(papszOptions, "COMPRESS=LZW"); nDataType = GDT_UInt16; strcpy(szFormat, "GTIFF"); pDriver = (GDALDriver*)GDALGetDriverByName(szFormat); if (pDriver != NULL) { pDs = pDriver->Create(outputFileName.c_str(), inputWidth, inputHeight, 1, nDataType, papszOptions); if (pDs != NULL) { pDs->GetRasterBand(1)->RasterIO(GF_Write, 0, 0, inputWidth, inputHeight, imageBuffer, inputWidth, inputHeight, nDataType, 0, 0); GDALFlushCache(pDs); GDALClose(pDs); } } free(datBuffer); free(imageBuffer); return 0; }
这段代码是一个C++程序,主要功能是读取一个.dat文件中的数据,并将数据写入一个.tiff文件中。文件路径和文件名都是通过输入参数来指定的。具体流程如下:
1. 首先,程序定义了一些变量,包括输入文件名(inputFileName)、输出文件名(outputFileName)、文件指针(pf)、数据缓冲区(datBuffer和imageBuffer)、输入图像的宽度和高度(inputWidth和inputHeight)、一些循环中使用的索引变量(i、j、indexX和indexY)、临时像素值变量(tempPixel)以及临时字节变量(tempByte)。
2. 然后,程序调用GDALAllRegister()函数进行GDAL库的初始化操作。
3. 接下来,程序通过调用fopen()函数打开输入文件,并使用fread()函数将文件中的数据读入到datBuffer中,然后再调用fclose()函数关闭文件。
4. 然后,程序通过两个嵌套的循环遍历图像的每个像素,其中i表示行索引,j表示列索引。在每个像素处,程序首先计算出在imageBuffer中的索引位置(根据是否进行左右翻转),然后从datBuffer中读取两个字节的数据,拼接成一个16位的像素值(tempPixel),并将其右移6位以进行取样操作。最后,程序将取样后的像素值按照低字节在前的方式写入到imageBuffer中。
5. 循环结束后,程序将imageBuffer中的数据写入到输出文件中。首先,程序构造输出文件名(在输入文件名后加上".test.tiff"后缀),然后使用GDAL库提供的函数创建输出文件,并设置其宽度、高度、波段数、数据类型和压缩选项。接下来,程序通过调用GetRasterBand()函数获取输出文件的第一个波段,并使用RasterIO()函数将imageBuffer中的数据写入到输出文件中。最后,程序调用GDALFlushCache()函数刷新缓存,并调用GDALClose()函数关闭输出文件。
6. 最后,程序释放datBuffer和imageBuffer的内存,并返回0表示运行成功。
请注意,这段代码涉及到了GDAL库的使用,需要在编译环境中引入相应的头文件和链接相应的库文件才能正常编译和运行。
if ((err = snd_pcm_hw_params(capture_handle, hw_params)) < 0) { printf("Error setting parameters: %s\n", snd_strerror(err)); return 1; } snd_pcm_hw_params_free(hw_params); unsigned int frames_per_period = 2048; snd_pcm_uframes_t period_size = frames_per_period * CHANNELS * 2; snd_pcm_uframes_t buffer_size = period_size * 2; if ((err = snd_pcm_set_params(capture_handle, FORMAT, SND_PCM_ACCESS_RW_INTERLEAVED, CHANNELS, rate, 1, frames_per_period)) < 0) { printf("Error setting parameters: %s\n", snd_strerror(err)); return 1; } FILE *file = fopen(argv[1], "wb"); if (!file) { printf("Error opening file for writing!\n"); return 1; } uint32_t chunk_size = 0; uint32_t subchunk_size = 16; uint16_t audio_format = 1; uint16_t num_channels = CHANNELS; uint32_t sample_rate = rate; uint32_t byte_rate = (rate * CHANNELS * 2); uint16_t block_align = (CHANNELS * 2); uint16_t bits_per_sample = 16; uint32_t data_size = 0; fwrite("RIFF", 1, 4, file); fwrite(&chunk_size, 4, 1, file); fwrite("WAVE", 1, 4, file); fwrite("fmt ", 1, 4, file); fwrite(&subchunk_size, 4, 1, file); fwrite(&audio_format, 2, 1, file); fwrite(&num_channels, 2, 1, file); fwrite(&sample_rate, 4, 1, file); fwrite(&byte_rate, 4, 1, file); fwrite(&block_align, 2, 1, file); fwrite(&bits_per_sample, 2, 1, file); fwrite("data", 1, 4, file); fwrite(&data_size, 4, 1, file); uint16_t buffer[frames_per_period * CHANNELS]; while (1) { int n = snd_pcm_readi(capture_handle, buffer, frames_per_period); if (n < 0) { printf("Error reading from PCM device: %s\n", snd_strerror(n)); break; } fwrite(buffer, 2, n * CHANNELS, file); data_size += n * CHANNELS * 2; } uint32_t file_size = data_size + 36; fseek(file, 4, SEEK_SET); fwrite(&file_size, 4, 1, file); fseek(file, 40, SEEK_SET); fwrite(&data_size, 4, 1, file); fclose(file); snd_pcm_close(capture_handle); 加上注释
/*
这段代码是一个录音程序,使用 ALSA 库进行音频捕获,将捕获到的音频写入到一个 WAV 文件中。
在程序中,首先进行 ALSA 库的初始化,然后设置音频捕获参数,包括采样率、声道数、采样大小等。
然后打开一个 WAV 文件,写入 WAV 文件头部信息,开始捕获音频并将捕获到的音频数据写入到 WAV 文件中。
最后,关闭 WAV 文件和 ALSA 库。
*/
// 引入 ALSA 库的头文件
#include <alsa/asoundlib.h>
int main(int argc, char **argv) {
// 定义 ALSA 相关的变量
snd_pcm_t *capture_handle;
snd_pcm_hw_params_t *hw_params;
int err;
// 打开默认音频捕获设备并进行初始化
if ((err = snd_pcm_open(&capture_handle, "default", SND_PCM_STREAM_CAPTURE, 0)) < 0) {
printf("Error opening PCM device: %s\n", snd_strerror(err));
return 1;
}
// 申请 ALSA 配置参数结构体,进行初始化
if ((err = snd_pcm_hw_params_malloc(&hw_params)) < 0) {
printf("Error allocating hardware parameter structure: %s\n", snd_strerror(err));
return 1;
}
if ((err = snd_pcm_hw_params_any(capture_handle, hw_params)) < 0) {
printf("Error initializing hardware parameter structure: %s\n", snd_strerror(err));
return 1;
}
// 设置音频捕获参数
unsigned int rate = 44100;
int CHANNELS = 2;
if ((err = snd_pcm_hw_params_set_access(capture_handle, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) {
printf("Error setting access type: %s\n", snd_strerror(err));
return 1;
}
if ((err = snd_pcm_hw_params_set_format(capture_handle, hw_params, SND_PCM_FORMAT_S16_LE)) < 0) {
printf("Error setting sample format: %s\n", snd_strerror(err));
return 1;
}
if ((err = snd_pcm_hw_params_set_channels(capture_handle, hw_params, CHANNELS)) < 0) {
printf("Error setting channel count: %s\n", snd_strerror(err));
return 1;
}
if ((err = snd_pcm_hw_params_set_rate_near(capture_handle, hw_params, &rate, 0)) < 0) {
printf("Error setting sample rate: %s\n", snd_strerror(err));
return 1;
}
if ((err = snd_pcm_hw_params_set_period_size_near(capture_handle, hw_params, &frames_per_period, 0)) < 0) {
printf("Error setting period size: %s\n", snd_strerror(err));
return 1;
}
if ((err = snd_pcm_hw_params_set_buffer_size_near(capture_handle, hw_params, &buffer_size)) < 0) {
printf("Error setting buffer size: %s\n", snd_strerror(err));
return 1;
}
if ((err = snd_pcm_hw_params(capture_handle, hw_params)) < 0) {
printf("Error setting parameters: %s\n", snd_strerror(err));
return 1;
}
// 释放 ALSA 配置参数结构体
snd_pcm_hw_params_free(hw_params);
// 计算每个周期的帧数和缓冲区大小
unsigned int frames_per_period = 2048;
snd_pcm_uframes_t period_size = frames_per_period * CHANNELS * 2;
snd_pcm_uframes_t buffer_size = period_size * 2;
// 设置音频捕获参数
if ((err = snd_pcm_set_params(capture_handle, SND_PCM_FORMAT_S16_LE, SND_PCM_ACCESS_RW_INTERLEAVED, CHANNELS, rate, 1, frames_per_period)) < 0) {
printf("Error setting parameters: %s\n", snd_strerror(err));
return 1;
}
// 打开要写入的 WAV 文件
FILE *file = fopen(argv[1], "wb");
if (!file) {
printf("Error opening file for writing!\n");
return 1;
}
// 写入 WAV 文件头部信息
uint32_t chunk_size = 0;
uint32_t subchunk_size = 16;
uint16_t audio_format = 1;
uint16_t num_channels = CHANNELS;
uint32_t sample_rate = rate;
uint32_t byte_rate = (rate * CHANNELS * 2);
uint16_t block_align = (CHANNELS * 2);
uint16_t bits_per_sample = 16;
uint32_t data_size = 0;
fwrite("RIFF", 1, 4, file);
fwrite(&chunk_size, 4, 1, file);
fwrite("WAVE", 1, 4, file);
fwrite("fmt ", 1, 4, file);
fwrite(&subchunk_size, 4, 1, file);
fwrite(&audio_format, 2, 1, file);
fwrite(&num_channels, 2, 1, file);
fwrite(&sample_rate, 4, 1, file);
fwrite(&byte_rate, 4, 1, file);
fwrite(&block_align, 2, 1, file);
fwrite(&bits_per_sample, 2, 1, file);
fwrite("data", 1, 4, file);
fwrite(&data_size, 4, 1, file);
// 读取音频数据并写入 WAV 文件
uint16_t buffer[frames_per_period * CHANNELS];
while (1) {
int n = snd_pcm_readi(capture_handle, buffer, frames_per_period);
if (n < 0) {
printf("Error reading from PCM device: %s\n", snd_strerror(n));
break;
}
fwrite(buffer, 2, n * CHANNELS, file);
data_size += n * CHANNELS * 2;
}
// 计算文件大小并更新 WAV 文件头部信息
uint32_t file_size = data_size + 36;
fseek(file, 4, SEEK_SET);
fwrite(&file_size, 4, 1, file);
fseek(file, 40, SEEK_SET);
fwrite(&data_size, 4, 1, file);
// 关闭 WAV 文件和 ALSA 库
fclose(file);
snd_pcm_close(capture_handle);
return 0;
}
阅读全文