BP神经网络综合评价法
时间: 2023-06-22 08:18:42 浏览: 154
BP神经网络多输入多输出预测,BP神经网络回归预测 评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高,方便学习和
BP神经网络综合评价法是一种基于BP神经网络的综合评价方法。其基本思想是将多个评价指标转化为BP神经网络的输入变量,通过网络训练得到一个综合评价函数,利用该函数对不同方案进行评价和排序。
具体来说,BP神经网络综合评价法主要包括以下几个步骤:
1. 确定评价指标:根据评价对象的特点和评价目的,确定需要评价的指标,如效益、成本、风险等。
2. 数据处理:将各个评价指标的数据进行标准化处理,以便于后续的网络训练和评价计算。
3. 网络训练:将标准化后的数据作为BP神经网络的输入变量,将评价结果作为输出变量,利用已知样本对网络进行训练,并优化网络结构和参数。
4. 综合评价:利用训练得到的BP神经网络模型对不同方案进行评价和排序,得到各个方案的综合评价值。
BP神经网络综合评价法具有较强的适应性和灵活性,能够有效地处理多个评价指标之间的复杂关系,是一种常用的综合评价方法。
阅读全文