请用pytorch写一个输入层的输入节点为(2,1),有 三个卷积层都为 20 个长度为 3 卷积层,三个最大池化层都为 4,一个非线性转化层大小为一个单元, ReLU 激活函数来激活池化过程中处理的结果,sidmoid 函数在末层网络中将输出结果在零和一之间,用 Adam 作为 cnn 的优化算法,学习效率为 0.001,评价指标为 RMSE 的一维卷积神经网络
时间: 2023-06-16 17:04:09 浏览: 111
python实现神经网络,从入门到精通,CNN卷积神经网络,循环神经网络网络 使用pytorch库实现
以下是一个简单的实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv1d(2, 20, 3)
self.pool1 = nn.MaxPool1d(4)
self.conv2 = nn.Conv1d(20, 20, 3)
self.pool2 = nn.MaxPool1d(4)
self.conv3 = nn.Conv1d(20, 20, 3)
self.pool3 = nn.MaxPool1d(4)
self.fc1 = nn.Linear(20, 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.conv1(x)
x = self.pool1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.pool2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.pool3(x)
x = self.relu(x)
x = x.view(-1, 20)
x = self.fc1(x)
x = self.sigmoid(x)
return x
# 定义输入数据
x = torch.randn(1, 2, 1)
y = torch.tensor([0.5])
# 初始化模型
model = ConvNet()
# 定义优化器和损失函数
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(1000):
optimizer.zero_grad()
y_pred = model(x)
loss = criterion(y_pred, y)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print(f"Epoch {epoch}: loss={loss.item()}")
# 评估模型
y_pred = model(x)
rmse = torch.sqrt(criterion(y_pred, y))
print(f"RMSE: {rmse.item()}")
```
阅读全文