matlab中canny算子的阈值怎么获取
时间: 2023-09-03 10:13:33 浏览: 174
在MATLAB中使用Canny算子进行边缘检测时,需要设置高阈值和低阈值。高阈值和低阈值决定了边缘的检测强度,不同的图像可能需要不同的阈值设置。
可以使用MATLAB提供的imhist函数来获取图像的直方图信息,根据直方图信息来确定适当的阈值。一般来说,高阈值和低阈值之间的差异越大,检测到的边缘就越少,而差异越小,则检测到的边缘就越多。
具体操作步骤如下:
1. 读取图像并转换为灰度图像。
2. 使用imhist函数获取图像的直方图信息。
3. 根据直方图信息确定合适的高阈值和低阈值。
4. 使用canny函数进行边缘检测,并将高阈值和低阈值作为输入参数传递给函数。
以下是一个示例代码,用于获取图像的边缘:
```
% 读取图像并转换为灰度图像
img = imread('image.jpg');
gray_img = rgb2gray(img);
% 使用imhist函数获取图像的直方图信息
counts = imhist(gray_img);
% 根据直方图信息确定高阈值和低阈值
high_threshold = graythresh(gray_img);
low_threshold = high_threshold * 0.4;
% 使用canny函数进行边缘检测
edge_img = edge(gray_img, 'canny', [low_threshold, high_threshold]);
```
在上述代码中,graythresh函数用于确定图像的高阈值,low_threshold是根据高阈值计算得出的低阈值。这里将低阈值设为高阈值的0.4倍,可以根据实际情况进行调整。最后使用edge函数进行边缘检测,第二个参数使用'canny'表示使用Canny算子进行边缘检测。
阅读全文
相关推荐



















