fn_resemble函数怎么用

时间: 2023-11-24 13:01:44 浏览: 21
fn_resemble函数是一个用于比较两个图片相似度的函数,可以用于图像识别、图像匹配等应用。 使用fn_resemble函数需要以下步骤: 1. 导入fn_resemble函数库。 2. 准备需要比较的两张图片。 3. 调用fn_resemble函数,将两张图片作为参数传入。 4. 获取fn_resemble函数的返回值,即两张图片的相似度。 以下是一个示例代码: ```python from fn_resemble import fn_resemble img1 = 'path/to/image1.jpg' img2 = 'path/to/image2.jpg' similarity = fn_resemble(img1, img2) print('两张图片的相似度为:', similarity) ``` 需要注意的是,fn_resemble函数需要安装Pillow库和OpenCV库才能正常运行。
相关问题

修改RuntimeError: found difference in connectivity。import spdkit from spdkit import * m1 = Molecule.from_file("POSCAR1") m2 = Molecule.from_file("POSCAR2") dis = m1.disparity_between(m2) m1.rebond() m1.rebond() rmsd = m1.resemble_rigidly(m2) print(rmsd)

这个错误通常是由于分子之间的连接方式不一致导致的。在计算 RMSD 值之前,需要确保两个分子具有相同的连接方式。您可以尝试以下修改: ```python import spdkit from spdkit import * # 读取分子文件 m1 = Molecule.from_file("POSCAR1") m2 = Molecule.from_file("POSCAR2") # 重新确定原子之间的连接方式 m1.rebond() m2.rebond() # 检查分子之间的差异性 dis = m1.disparity_between(m2) if dis: # 如果分子之间存在差异性,则修正分子的连接方式 m1.fix_bonds(m2.get_bonds()) # 计算 RMSD 值 rmsd = m1.resemble_rigidly(m2) print(rmsd) ``` 这里使用 `fix_bonds` 函数修正分子的连接方式,如果两个分子之间存在差异性,则将第一个分子的连接方式更新为第二个分子的连接方式。然后再计算 RMSD 值。

python创建狸花猫类Cat,创建名字name,年龄age和体重weight三个实例变量,然后创建一个用于比较狸花猫是否相似的方法resemble() 创建三个狸花猫对象,调用方法进行两两判断狸花猫是否相同

可以按照以下代码实现: ```python class Cat: def __init__(self, name, age, weight): self.name = name self.age = age self.weight = weight def resemble(self, other): if self.age == other.age and self.weight == other.weight: return True else: return False cat1 = Cat("Tom", 2, 4) cat2 = Cat("Jerry", 2, 4) cat3 = Cat("Kitty", 3, 5) print(cat1.name, "and", cat2.name, "resemble?", cat1.resemble(cat2)) print(cat1.name, "and", cat3.name, "resemble?", cat1.resemble(cat3)) print(cat2.name, "and", cat3.name, "resemble?", cat2.resemble(cat3)) ``` 输出结果: ``` Tom and Jerry resemble? True Tom and Kitty resemble? False Jerry and Kitty resemble? False ``` 其中,`__init__()` 方法用于初始化实例变量,`resemble()` 方法用于比较狸花猫是否相似,返回值为布尔类型。然后我们创建了三个狸花猫对象,并分别调用 `resemble()` 方法进行比较,输出比较结果。

相关推荐

翻译This SiO2 shell is a key component in the mechanism for reversible actuation, as illustrated by finite element analysis (FEA) in Fig. 1C. An increase in temperature transforms the SMA (nitinol) from the martensitic to the austenitic phase, causing the 3D structure to flatten into a 2D shape. The responses of the SMA elements at the joints act as driving forces to deform the PI skeleton. This process also elastically deforms the SiO2 shell, resulting in a counter force that limits the magnitude of the deformation. The change in shape ceases when the forces from the shell balance those from the joints (right frame in Fig. 1C). Upon a reduction in temperature, the SMA changes from the austenitic back to the martensitic phase, thereby reducing the force produced by the SMA at the joints to zero. The elastic forces associated with the shell then push the entire system back to the original 3D geometry (left frame in Fig. 1C). Figure S3A simulates the moments generated by the SMA and the SiO2 shell. In the FEA model, the SiO2 shell appears on both the outer and inner surfaces of the 3D robot, consistent with experiments (fig. S3B). Although a single layer of the SiO2 shell at the outer or inner surface can also provide restoring force, the double-layer shell structure follows naturally from the conformal deposition process. This actuation scheme allows for reversible shape transformations using a one-way shape memory material. Without the shell, the structure only supports a single change in shape, from 3D to 2D, as illustrated in fig. S3C. Figure 1D shows optical images of a freestanding 3D peekytoe crab on the edge of a coin, highlighting the preserved 3D geometry enabled by the SiO2 shell after release from the elastomer substrate. Other 3D structures in geometries that resemble baskets, circular helices, and double-floor helices also exhibit high shape storage ratios (>85%) after cycles of heating and cooling (fig. S4). This ratio (s) is defined as s = 1 − |L1 − L0|/L0 × 100%, where L0 and L1 are the distances between the bonding sites at both ends at the initial stage and subsequent stages, respectively

最新推荐

recommend-type

setuptools-40.7.3-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Centos7-离线安装redis

Centos7-离线安装redis
recommend-type

setuptools-39.0.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于JSP实现的在线仓库管理系统源码.zip

这个是一个JSP实现的在线仓库管理系统,管理员角色包含以下功能:仓库管理员登录,货品&类别信息管理,采购信息管理,出库和入库管理,财务信息管理,管理员管理等功能。 本项目实现的最终作用是基于JSP实现的在线仓库管理系统 分为1个角色 第1个角色为管理员角色,实现了如下功能: - 仓库管理员登录 - 出库和入库管理 - 管理员管理 - 财务信息管理 - 货品&类别信息管理 - 采购信息管理
recommend-type

基于springboot的房屋租赁系统

开发语言:Java JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.6/5.7(或8.0) 数据库工具:Navicat 开发软件:idea 依赖管理包:Maven 代码+数据库保证完整可用,可提供远程调试并指导运行服务(额外付费)~ 如果对系统的中的某些部分感到不合适可提供修改服务,比如题目、界面、功能等等... 声明: 1.项目已经调试过,完美运行 2.需要远程帮忙部署项目,需要额外付费 3.本项目有演示视频,如果需要观看,请联系我v:19306446185 4.调试过程中可帮忙安装IDEA,eclipse,MySQL,JDK,Tomcat等软件 重点: 需要其他Java源码联系我,更多源码任你选,你想要的源码我都有! https://img-blog.csdnimg.cn/direct/e73dc0ac8d27434b86d886db5a438c71.jpeg
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。