UNET和RNN结合的代码
时间: 2023-06-16 20:05:58 浏览: 121
UNET和RNN结合的代码可以参考以下示例:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dropout, concatenate, LSTM, TimeDistributed, Dense
from tensorflow.keras.models import Model
def unet_rnn(input_shape=(256, 256, 3), rnn_units=128):
input_layer = Input(input_shape)
# Encoder
conv1 = Conv2D(64, 3, activation='relu', padding='same')(input_layer)
conv1 = Conv2D(64, 3, activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same')(pool1)
conv2 = Conv2D(128, 3, activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation='relu', padding='same')(pool2)
conv3 = Conv2D(256, 3, activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation='relu', padding='same')(pool3)
conv4 = Conv2D(512, 3, activation='relu', padding='same')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
# RNN
lstm1 = LSTM(rnn_units, return_sequences=True)(drop4)
lstm2 = LSTM(rnn_units, return_sequences=True)(lstm1)
# Decoder
up5 = Conv2D(256, 2, activation='relu', padding='same')(tf.keras.layers.UpSampling2D(size=(2, 2))(lstm2))
merge5 = concatenate([drop4, up5], axis=3)
conv5 = Conv2D(256, 3, activation='relu', padding='same')(merge5)
conv5 = Conv2D(256, 3, activation='relu', padding='same')(conv5)
up6 = Conv2D(128, 2, activation='relu', padding='same')(tf.keras.layers.UpSampling2D(size=(2, 2))(conv5))
merge6 = concatenate([conv3, up6], axis=3)
conv6 = Conv2D(128, 3, activation='relu', padding='same')(merge6)
conv6 = Conv2D(128, 3, activation='relu', padding='same')(conv6)
up7 = Conv2D(64, 2, activation='relu', padding='same')(tf.keras.layers.UpSampling2D(size=(2, 2))(conv6))
merge7 = concatenate([conv2, up7], axis=3)
conv7 = Conv2D(64, 3, activation='relu', padding='same')(merge7)
conv7 = Conv2D(64, 3, activation='relu', padding='same')(conv7)
up8 = Conv2D(32, 2, activation='relu', padding='same')(tf.keras.layers.UpSampling2D(size=(2, 2))(conv7))
merge8 = concatenate([conv1, up8], axis=3)
conv8 = Conv2D(32, 3, activation='relu', padding='same')(merge8)
conv8 = Conv2D(32, 3, activation='relu', padding='same')(conv8)
output_layer = Conv2D(1, 1, activation='sigmoid', name='output_layer')(conv8)
model = Model(inputs=[input_layer], outputs=[output_layer])
return model
```
这是一个基于TensorFlow的UNET+RNN模型,其中UNET用于图像分割,RNN用于学习序列数据特征。该模型由4个主要部分组成:编码器、RNN、解码器和输出层。在编码器中,图像经过一系列卷积和池化层,最终生成一个高维特征向量;在RNN中,特征向量经过两层LSTM层,学习序列数据特征;在解码器中,RNN的输出通过反卷积层进行上采样,与编码器中的特征图进行合并,最终生成分割掩膜。
阅读全文