def dnorm(mean, variance, size=1): if isinstance(size, int): size = size, return mean + np.sqrt(variance) * np.random.randn(*size)
时间: 2024-04-03 13:36:17 浏览: 38
这是一个Python函数,用于生成服从正态分布(均值为mean,方差为variance)的随机数。其中,参数size表示生成的随机数的个数,默认为1。如果size为整数,则生成一个长度为size的一维数组;如果size为元组,则生成一个形状为size的多维数组。函数的实现依赖于NumPy库中的randn函数,该函数可以生成服从标准正态分布的随机数。函数返回生成的随机数数组。
相关问题
def formatData(X, y, i): # Format the MFCC data X_data = [] y_data = [] if i==0: # 12 features (MFCC) for sample, label in zip(X, y): features = extractFeatures(sample) mfcc = np.mean(features, axis=0).reshape((1, n_mfcc)) # mean X_data.append(mfcc) y_data.append(label) X_data = np.reshape(X_data, (-1, n_mfcc)) else: # 24 features (MFCC + variance) for sample, label in zip(X, y): features = extractFeatures(sample) mfcc = np.mean(features, axis=0).reshape((1, n_mfcc)) # mean var = np.var(features, axis=0).reshape((1, n_mfcc)) # added variance X_data.append(np.hstack((mfcc, var))) y_data.append(label) X_data = np.reshape(X_data, (-1, 2*n_mfcc)) return np.array(X_data), np.array(y_data)
这段代码是一个数据预处理函数,用于将原始的音频数据转换为可以用于机器学习模型训练的数据格式。具体含义如下:
- `X`:输入数据,包括MFCC特征。
- `y`:标签数据,包括各个音频文件所属的乐器类别。
- `i`:选择特征数量的标志位,如果为0则只使用MFCC的平均值,如果为1则使用MFCC的平均值和方差。
下面是函数的具体实现:
1. 遍历所有输入样本,处理每个样本的MFCC特征。
2. 对于每个样本,提取MFCC特征并计算其平均值或平均值和方差。
3. 将处理后的数据添加到`X_data`和`y_data`中。
4. 根据标志位`i`的不同,将`X_data`格式化为12个MFCC特征或者24个MFCC特征和方差。
5. 返回格式化后的`X_data`和`y_data`。
这个函数是一个非常重要的预处理步骤,可以将原始的音频数据转换为可用于机器学习的格式。在这个函数中,使用了`extractFeatures`函数提取MFCC特征,并使用`numpy`库计算平均值和方差。最终得到的数据格式可以直接用于训练和评估机器学习模型。
def estimate_variance(xs: np.ndarray, ys: np.ndarray, affine: np.ndarray, translation: np.ndarray, responsibility: np.ndarray) -> float: """ Estimate the variance of GMM. For simplification, we assume all the Gaussian distributions share the same variance, and each feature dimension is independent, so the variance can be represented as a scalar. :param xs: a set of points with size (N, D), N is the number of samples, D is the dimension of points :param ys: a set of points with size (M, D), M is the number of samples, D is the dimension of points :param affine: an affine matrix with size (D, D) :param translation: a translation vector with size (1, D) :param responsibility: the responsibility matrix with size (N, M) :return: the variance of each Gaussian distribution, a float """ # TODO: change the code below and compute the variance of each Gaussian return 1
To compute the variance of each Gaussian distribution, we can use the following steps:
1. Transform the xs using the affine matrix and translation vector:
```
xs_transformed = xs.dot(affine) + translation
```
2. Compute the pairwise distance matrix between xs_transformed and ys:
```
distance_matrix = np.linalg.norm(xs_transformed[:, np.newaxis, :] - ys[np.newaxis, :, :], axis=2)
```
3. Compute the weighted sum of squared distances for each Gaussian:
```
weighted_distances = distance_matrix**2 * responsibility
sum_weighted_distances = np.sum(weighted_distances, axis=(0, 1))
```
4. Compute the total weight of all the points:
```
total_weight = np.sum(responsibility)
```
5. Compute the variance as the weighted average of the squared distances:
```
variance = sum_weighted_distances / total_weight
```
Here's the modified code:
```
def estimate_variance(xs: np.ndarray, ys: np.ndarray, affine: np.ndarray,
translation: np.ndarray, responsibility: np.ndarray) -> float:
"""
Estimate the variance of GMM.
For simplification, we assume all the Gaussian distributions share the same variance,
and each feature dimension is independent, so the variance can be represented as a scalar.
:param xs: a set of points with size (N, D), N is the number of samples, D is the dimension of points
:param ys: a set of points with size (M, D), M is the number of samples, D is the dimension of points
:param affine: an affine matrix with size (D, D)
:param translation: a translation vector with size (1, D)
:param responsibility: the responsibility matrix with size (N, M)
:return:
the variance of each Gaussian distribution, a float
"""
# Transform xs using the affine matrix and translation vector
xs_transformed = xs.dot(affine) + translation
# Compute the pairwise distance matrix between xs_transformed and ys
distance_matrix = np.linalg.norm(xs_transformed[:, np.newaxis, :] - ys[np.newaxis, :, :], axis=2)
# Compute the weighted sum of squared distances for each Gaussian
weighted_distances = distance_matrix**2 * responsibility
sum_weighted_distances = np.sum(weighted_distances, axis=(0, 1))
# Compute the total weight of all the points
total_weight = np.sum(responsibility)
# Compute the variance as the weighted average of the squared distances
variance = sum_weighted_distances / total_weight
return variance
```
阅读全文