外点罚函数法matlab程序
时间: 2023-07-29 09:12:11 浏览: 86
以下是外点罚函数法的MATLAB程序示例:
```
function [x,fval,iter] = penalty(fun,x0,options)
% Penalty function method for constrained optimization
% fun: objective function
% x0: initial point
% options: structure with options (see documentation for optimoptions)
% x: solution
% fval: objective function value at solution
% iter: number of iterations
% Define default options if none are provided
if nargin < 3
options = optimoptions(@fmincon,'Display','off');
end
% Define penalty function
penaltyFun = @(x) penaltyFunHelper(x,fun);
% Initialize penalty parameter and iteration counter
mu = 1;
iter = 0;
% Loop until convergence or maximum number of iterations reached
while true
% Define constraint function with current penalty parameter
cFun = @(x) penaltyFun(x) + mu * sum(max(0, -fun(x)));
% Solve constrained optimization problem
[x,fval,exitflag] = fmincon(cFun,x0,[],[],[],[],[],[],[],options);
% Increment iteration counter
iter = iter + 1;
% If solution is feasible (i.e., all constraints are satisfied), return
% solution and objective function value
if all(fun(x) <= 0)
return
end
% Increase penalty parameter for next iteration
mu = mu * 10;
% If exitflag is not 1 (i.e., optimization did not converge), print
% warning message
if exitflag ~= 1
warning('Optimization did not converge in iteration %d',iter);
end
end
end
function [f,grad] = penaltyFunHelper(x,fun)
% Helper function to compute penalty function and gradient
f = sum(max(0,fun(x)));
if nargout > 1
grad = zeros(size(x));
for i = 1:length(x)
if fun(x(i)) > 0
grad(i) = sum(max(0,fun(x)));
end
end
end
end
```
此程序实现了外点罚函数法的基本步骤。首先,定义了一个罚函数,它是原始目标函数和约束的组合。然后,使用fmincon函数求解约束优化问题,并将罚函数作为约束函数传递。如果解是可行的(即所有约束都满足),则程序返回解和目标函数值。否则,程序增加罚函数参数,并继续迭代,直到解决方案是可行的或达到最大迭代次数。
阅读全文