yolo跌倒行为检测的代码
时间: 2023-09-08 08:15:01 浏览: 92
以下是使用YOLOv3实现跌倒行为检测的代码示例:
```python
import cv2
import numpy as np
# 加载YOLOv3模型
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
# 加载类别标签文件
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# 获取输出层信息
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# 加载视频流
cap = cv2.VideoCapture(0)
while True:
# 读取一帧图像
ret, frame = cap.read()
if not ret:
break
# 对图像进行预处理
blob = cv2.dnn.blobFromImage(frame, scalefactor=0.00392, size=(416, 416), mean=(0, 0, 0), swapRB=True, crop=False)
# 将预处理后的图像输入到网络中进行推理
net.setInput(blob)
outs = net.forward(output_layers)
# 解析网络的输出结果,获取识别结果
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
# 检测到了物体,记录其类别、置信度和位置信息
center_x = int(detection[0] * frame.shape[1])
center_y = int(detection[1] * frame.shape[0])
w = int(detection[2] * frame.shape[1])
h = int(detection[3] * frame.shape[0])
x = int(center_x - w / 2)
y = int(center_y - h / 2)
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
# 非最大值抑制,对重叠的物体进行去重
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# 在图像中绘制识别结果
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = f"{classes[class_ids[i]]}: {confidences[i]:.2f}"
color = (0, 255, 0)
if classes[class_ids[i]] == "person":
# 检测到了人,判断是否跌倒
if h > 1.2 * w:
label = "Fall Detected"
color = (0, 0, 255)
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# 显示图像
cv2.imshow("Detection", frame)
# 按下 q 键退出程序
if cv2.waitKey(1) == ord('q'):
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
```
注:以上代码仅用于示例,具体实现可能与实际情况有所不同,需要根据具体需求进行调整。同时,为了使模型能够检测到跌倒行为,需要在训练数据中包含跌倒行为的样本,并重新训练YOLOv3模型。
阅读全文