LPRnet检测车牌代码
时间: 2023-09-11 17:10:35 浏览: 71
以下是基于Python和OpenCV实现的LPRnet检测车牌的示例代码:
```python
import cv2
import numpy as np
# 加载LPRnet模型
model = cv2.dnn.readNetFromTensorflow('lprnet.pb')
# 车牌字符集
charset = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# 车牌颜色映射表
color_map = {
'blue': ([100, 50, 50], [140, 255, 255]),
'green': ([35, 50, 50], [90, 255, 255]),
'yellow': ([15, 50, 50], [35, 255, 255])
}
# 检测车牌
def detect_plate(image, color='blue'):
# 将图像转换为HSV颜色空间
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# 提取车牌颜色的掩码
lower_color, upper_color = color_map[color]
mask = cv2.inRange(hsv, np.array(lower_color), np.array(upper_color))
# 对掩码进行形态学处理
kernel = np.ones((3, 3), np.uint8)
mask = cv2.erode(mask, kernel, iterations=1)
mask = cv2.dilate(mask, kernel, iterations=1)
# 在原图上绘制掩码结果
result = cv2.bitwise_and(image, image, mask=mask)
# 查找轮廓
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 取面积最大的轮廓
max_contour = max(contours, key=lambda x: cv2.contourArea(x))
# 计算轮廓的最小外接矩形
rect = cv2.minAreaRect(max_contour)
box = cv2.boxPoints(rect)
box = np.int0(box)
# 在原图上绘制车牌区域
cv2.drawContours(image, [box], 0, (0, 0, 255), 2)
# 裁剪出车牌区域
plate = cv2.getRectSubPix(result, (int(rect[1][0]), int(rect[1][1])), rect[0])
return plate
# 车牌字符识别
def recognize_plate(plate):
# 将车牌图像缩放到固定大小
plate = cv2.resize(plate, (94, 24))
# 图像预处理
plate = cv2.cvtColor(plate, cv2.COLOR_BGR2GRAY)
plate = cv2.equalizeHist(plate)
plate = plate.astype(np.float32) / 255.0
plate = np.expand_dims(plate, axis=0)
plate = np.expand_dims(plate, axis=-1)
# 使用LPRnet模型识别车牌字符
model.setInput(plate)
preds = model.forward()
preds = np.squeeze(preds, axis=0)
preds = np.argmax(preds, axis=-1)
chars = ''.join([charset[c] for c in preds])
return chars
# 测试
if __name__ == '__main__':
# 加载测试图像
image = cv2.imread('test.jpg')
# 检测车牌
plate = detect_plate(image, 'blue')
# 车牌字符识别
chars = recognize_plate(plate)
# 在原图上绘制识别结果
cv2.putText(image, chars, (100, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imshow('image', image)
cv2.waitKey()
```
在上述代码中,我们首先加载了LPRnet模型,然后定义了车牌字符集和车牌颜色映射表。接着,我们实现了`detect_plate`函数来检测车牌,并使用`recognize_plate`函数对车牌字符进行识别。最后,在主函数中加载测试图像,调用`detect_plate`和`recognize_plate`函数,最终在原图上绘制了识别结果。
阅读全文