解释这段代码: df['EWMavg']=df['avgVehicleSpeed'].ewm(span=3, adjust=False).mean() df['EWMflow']=df['vehicleFlowRate'].ewm(span=3, adjust=False).mean() df['EWMtraffic']=df['trafficConcentration'].ewm(span=3, adjust=False).mean() return df def generateXYspeed20(df): df['ydiff'] = df['avgVehicleSpeed'].shift(forward)/df['avgVehicleSpeed'] - 1 df['y'] = 0 df.loc[df['ydiff']<-0.2,['y']]=1 df.dropna(inplace=True) y = df['y'] X = df.drop(['y','ydiff'], axis=1) return X , y def generateXYspeedUnder(df): mean = df['avgVehicleSpeed'].mean() df['ydiff'] = df['avgVehicleSpeed'].shift(forward) df['y'] = 0 df.loc[df['ydiff']<mean*0.6,['y']]=1 df.dropna(inplace=True) y = df['y'] X = df.drop(['y','ydiff'], axis=1) return X , y def generateXYspeedAndFlowUnder(df): means = df['avgVehicleSpeed'].mean() meanf = df['vehicleFlowRate'].mean() df['ydiffSpeed'] = df['avgVehicleSpeed'].shift(forward) df['ydiffFlow'] = df['vehicleFlowRate'].shift(forward) df['y'] = 0 df.loc[(df['ydiffSpeed']<means*0.6) &(df['ydiffFlow']<meanf*0.6),['y']]=1 df.dropna(inplace=True) y = df['y'] X = df.drop(['y','ydiffSpeed','ydiffFlow'], axis=1) return X , y def print_metrics(y_true,y_pred): conf_mx = confusion_matrix(y_true,y_pred) print(conf_mx) print (" Accuracy : ", accuracy_score(y_true,y_pred)) print (" Precision : ", precision_score(y_true,y_pred)) print (" Sensitivity : ", recall_score(y_true,y_pred))
时间: 2023-06-16 08:04:36 浏览: 126
这段代码是一个机器学习模型的预处理和评估步骤。其中,`df`是一个包含车辆流量、速度和交通浓度等信息的数据框。首先,通过指数加权平均(EWMA)计算出每列的移动平均值,并将其保存到新的列中。然后,定义了三个不同的函数,分别用于处理不同的模型输入变量和目标变量。这些函数中,`generateXYspeed20`函数是用于生成速度降低超过20%的样本数据的,`generateXYspeedUnder`函数是用于生成速度低于平均速度60%的样本数据的,`generateXYspeedAndFlowUnder`函数是用于生成速度低于平均速度60%且流量低于平均流量60%的样本数据的。这些函数中,通过对数据进行平移和差分操作来计算目标变量,并将其保存到新的列中。最后,定义了一个名为`print_metrics`的函数,用于计算和打印出模型的评估指标,包括混淆矩阵、准确率、精确率和召回率等。其中,混淆矩阵用于显示分类模型的真实分类和预测分类之间的关系。
相关问题
解释这段代码: df['EWMavg']=df['avgVehicleSpeed'].ewm(span=3, adjust=False).mean() df['EWMflow']=df['vehicleFlowRate'].ewm(span=3, adjust=False).mean() df['EWMtraffic']=df['trafficConcentration'].ewm(span=3, adjust=False).mean() return df def generateXYspeed20(df): df['ydiff'] = df['avgVehicleSpeed'].shift(forward)/df['avgVehicleSpeed'] - 1 df['y'] = 0 df.loc[df['ydiff']<-0.2,['y']]=1 df.dropna(inplace=True) y = df['y'] X = df.drop(['y','ydiff'], axis=1) return X , y def generateXYspeedUnder(df): mean = df['avgVehicleSpeed'].mean() df['ydiff'] = df['avgVehicleSpeed'].shift(forward) df['y'] = 0 df.loc[df['ydiff']<mean0.6,['y']]=1 df.dropna(inplace=True) y = df['y'] X = df.drop(['y','ydiff'], axis=1) return X , y def generateXYspeedAndFlowUnder(df): means = df['avgVehicleSpeed'].mean() meanf = df['vehicleFlowRate'].mean() df['ydiffSpeed'] = df['avgVehicleSpeed'].shift(forward) df['ydiffFlow'] = df['vehicleFlowRate'].shift(forward) df['y'] = 0 df.loc[(df['ydiffSpeed']<means0.6) &(df['ydiffFlow']<meanf*0.6),['y']]=1 df.dropna(inplace=True) y = df['y'] X = df.drop(['y','ydiffSpeed','ydiffFlow'], axis=1) return X , y def print_metrics(y_true,y_pred): conf_mx = confusion_matrix(y_true,y_pred) print(conf_mx) print (" Accuracy : ", accuracy_score(y_true,y_pred)) print (" Precision : ", precision_score(y_true,y_pred)) print (" Sensitivity : ", recall_score(y_true,y_pred))
这段代码是一个数据预处理的过程,主要是针对 DataFrame 数据进行操作。
第一个函数 generate_avgs 是计算 DataFrame 中三个特征(avgVehicleSpeed,vehicleFlowRate 和 trafficConcentration)的指数加权平均(Exponential Weighted Mean,简称 EWM),并添加到 DataFrame 中。这里使用的是 Pandas 库中的 ewm 函数,其中 span 参数表示时间窗口大小,adjust 参数表示是否使用偏差校正。
第二个函数 generateXYspeed20 是为了生成训练集和测试集,其中 y 表示是否出现了平均车速降低超过 20% 的情况。首先,函数计算了当前时刻和 forward 个时刻之间的平均车速的变化率(即相对变化),然后对 y 进行赋值,如果变化率小于 -0.2,则将 y 赋值为 1,否则为 0。最后,函数返回特征矩阵 X 和目标变量 y。
第三个函数 generateXYspeedUnder 和第四个函数 generateXYspeedAndFlowUnder 分别与第二个函数类似,只是针对的是平均车速低于平均值 0.6 倍的情况和同时考虑平均车速和车流量低于平均值 0.6 倍的情况,这两个函数也会返回特征矩阵 X 和目标变量 y。
最后一个函数 print_metrics 是为了评估模型的性能指标,其中包括混淆矩阵、准确率、精确率和召回率。这里使用的是 scikit-learn 库中的相关函数来计算这些指标。
下面这段代码什么意思:for i in range(1,backward+1): df['avgDiff'+str(i)] = df['avgVehicleSpeed'].shift(i-1)/ df['avgVehicleSpeed'].shift(i) - 1 df['avgDiff'+str(i)].replace([np.inf, -np.inf], np.nan,inplace=True) df['avgDiff'+str(i)].fillna(method='bfill') df['flowDiff'+str(i)] = df['vehicleFlowRate'].shift(i-1)/ df['vehicleFlowRate'].shift(i) - 1 df['flowDiff'+str(i)].replace([np.inf, -np.inf], np.nan,inplace=True) df['flowDiff'+str(i)].fillna(method='bfill') df['flowTraffic'+str(i)] = df['trafficConcentration'].shift(i-1)/ df['trafficConcentration'].shift(i) - 1 df['flowTraffic'+str(i)].replace([np.inf, -np.inf], np.nan,inplace=True) df['flowTraffic'+str(i)].fillna(method='bfill') # EWL df['EWMavg']=df['avgVehicleSpeed'].ewm(span=3, adjust=False).mean() df['EWMflow']=df['vehicleFlowRate'].ewm(span=3, adjust=False).mean() df['EWMtraffic']=df['trafficConcentration'].ewm(span=3, adjust=False).mean() return df def generateXYspeed20(df): df['ydiff'] = df['avgVehicleSpeed'].shift(forward)/df['avgVehicleSpeed'] - 1 df['y'] = 0 df.loc[df['ydiff']<-0.2,['y']]=1 df.dropna(inplace=True) y = df['y'] X = df.drop(['y','ydiff'], axis=1) return X , y def generateXYspeedUnder(df): mean = df['avgVehicleSpeed'].mean() df['ydiff'] = df['avgVehicleSpeed'].shift(forward) df['y'] = 0 df.loc[df['ydiff']<mean*0.6,['y']]=1 df.dropna(inplace=True) y = df['y'] X = df.drop(['y','ydiff'], axis=1) return X , y def generateXYspeedAndFlowUnder(df): means = df['avgVehicleSpeed'].mean() meanf = df['vehicleFlowRate'].mean() df['ydiffSpeed'] = df['avgVehicleSpeed'].shift(forward) df['ydiffFlow'] = df['vehicleFlowRate'].shift(forward) df['y'] = 0 df.loc[(df['ydiffSpeed']<means*0.6) &(df['ydiffFlow']<meanf*0.6),['y']]=1 df.dropna(inplace=True) y = df['y'] X = df.drop(['y','ydiffSpeed','ydiffFlow'], axis=1) return X , y def print_metrics(y_true,y_pred): conf_mx = confusion_matrix(y_true,y_pred) print(conf_mx) print (" Accuracy : ", accuracy_score(y_true,y_pred)) print (" Precision : ", precision_score(y_true,y_pred)) print (" Sensitivity : ", recall_score(y_true,y_pred))
这段代码是一个循环,它遍历了一个数列,数列的起点是1,终点是backward减1。在循环中,代码对数据框df的不同列进行了操作。首先,代码计算了df['avgVehicleSpeed']列按照向后位移i-1后与向后位移i后的比率的差值,并将其存储到df['avgDiff' str(i)]中。然后,代码将df['avgDiff' str(i)]中的无穷大值和负无穷大值替换成了NaN,并用后一个非NaN值填充缺失的NaN值。接下来,代码对df['vehicleFlowRate']列和df['trafficConcentration']列做了类似的操作。最终,代码将计算得到的结果存储到不同的列中,并返回修改后的数据框df。
阅读全文