一元多项式加减乘除c语言

时间: 2024-01-04 11:43:28 浏览: 46
以下是一元多项式加减乘除的C语言代码实现: 一、一元多项式的结构体定义 ``` typedef struct PolyNode *PtrToPoly; struct PolyNode { int coef; // 系数 int expon; // 指数 PtrToPoly next; }; typedef PtrToPoly Polynomial; ``` 二、一元多项式的创建 ``` Polynomial CreatePoly() { Polynomial p, rear, t; int c, e, n; printf("请输入多项式的项数:"); scanf("%d", &n); rear = (Polynomial)malloc(sizeof(struct PolyNode)); rear->next = NULL; p = rear; while (n--) { printf("请输入系数和指数:"); scanf("%d %d", &c, &e); t = (Polynomial)malloc(sizeof(struct PolyNode)); t->coef = c; t->expon = e; t->next = NULL; rear->next = t; rear = t; } t = p; p = p->next; free(t); return p; } ``` 三、一元多项式的加法 ``` Polynomial AddPoly(Polynomial p1, Polynomial p2) { Polynomial front, rear, temp; int sum; rear = (Polynomial)malloc(sizeof(struct PolyNode)); front = rear; while (p1 && p2) { if (p1->expon == p2->expon) { sum = p1->coef + p2->coef; if (sum) { temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = sum; temp->expon = p1->expon; rear->next = temp; rear = temp; } p1 = p1->next; p2 = p2->next; } else if (p1->expon > p2->expon) { temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; rear->next = temp; rear = temp; p1 = p1->next; } else { temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = p2->coef; temp->expon = p2->expon; rear->next = temp; rear = temp; p2 = p2->next; } } while (p1) { temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; rear->next = temp; rear = temp; p1 = p1->next; } while (p2) { temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = p2->coef; temp->expon = p2->expon; rear->next = temp; rear = temp; p2 = p2->next; } rear->next = NULL; temp = front; front = front->next; free(temp); return front; } ``` 四、一元多项式的减法 ``` Polynomial SubtractPoly(Polynomial p1, Polynomial p2) { Polynomial front, rear, temp; int sum; rear = (Polynomial)malloc(sizeof(struct PolyNode)); front = rear; while (p1 && p2) { if (p1->expon == p2->expon) { sum = p1->coef - p2->coef; if (sum) { temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = sum; temp->expon = p1->expon; rear->next = temp; rear = temp; } p1 = p1->next; p2 = p2->next; } else if (p1->expon > p2->expon) { temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; rear->next = temp; rear = temp; p1 = p1->next; } else { temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = -p2->coef; temp->expon = p2->expon; rear->next = temp; rear = temp; p2 = p2->next; } } while (p1) { temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; rear->next = temp; rear = temp; p1 = p1->next; } while (p2) { temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = -p2->coef; temp->expon = p2->expon; rear->next = temp; rear = temp; p2 = p2->next; } rear->next = NULL; temp = front; front = front->next; free(temp); return front; } ``` 五、一元多项式的乘法 ``` Polynomial MultiplyPoly(Polynomial p1, Polynomial p2) { Polynomial p, rear, t, t1, t2; int c, e; if (!p1 || !p2) { return NULL; } t1 = p1; t2 = p2; rear = (Polynomial)malloc(sizeof(struct PolyNode)); rear->next = NULL; p = rear; while (t2) { c = t1->coef * t2->coef; e = t1->expon + t2->expon; t = (Polynomial)malloc(sizeof(struct PolyNode)); t->coef = c; t->expon = e; rear->next = t; rear = t; t2 = t2->next; } t1 = t1->next; while (t1) { t2 = p2; rear = p; while (t2) { e = t1->expon + t2->expon; c = t1->coef * t2->coef; while (rear->next && rear->next->expon > e) { rear = rear->next; } if (rear->next && rear->next->expon == e) { if (rear->next->coef + c) { rear->next->coef += c; } else { t = rear->next; rear->next = t->next; free(t); } } else { t = (Polynomial)malloc(sizeof(struct PolyNode)); t->coef = c; t->expon = e; t->next = rear->next; rear->next = t; rear = rear->next; } t2 = t2->next; } t1 = t1->next; } t2 = p; p = p->next; free(t2); return p; } ``` 六、一元多项式的除法 ``` void DividePoly(Polynomial dividend, Polynomial divisor, Polynomial *pQuotient, Polynomial *pRemainder) { Polynomial temp; if (!divisor) { printf("除数不能为0!\n"); return; } *pQuotient = (Polynomial)malloc(sizeof(struct PolyNode)); (*pQuotient)->next = NULL; *pRemainder = (Polynomial)malloc(sizeof(struct PolyNode)); (*pRemainder)->next = NULL; while (dividend && dividend->expon >= divisor->expon) { temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = dividend->coef / divisor->coef; temp->expon = dividend->expon - divisor->expon; temp->next = (*pQuotient)->next; (*pQuotient)->next = temp; temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = dividend->coef - temp->coef * divisor->coef; temp->expon = dividend->expon; temp->next = (*pRemainder)->next; (*pRemainder)->next = temp; dividend = dividend->next; } while (dividend) { temp = (Polynomial)malloc(sizeof(struct PolyNode)); temp->coef = dividend->coef; temp->expon = dividend->expon; temp->next = (*pRemainder)->next; (*pRemainder)->next = temp; dividend = dividend->next; } temp = (*pQuotient); (*pQuotient) = (*pQuotient)->next; free(temp); temp = (*pRemainder); (*pRemainder) = (*pRemainder)->next; free(temp); } ```

相关推荐

最新推荐

recommend-type

C语言:一元多项式加减法运算(链表 附答案).docx

C语言链表的入门题,里面提供了两种思路供参考,用链表来实现一元多项式的加减法,并按照一定规律输出。也是练习链表和排序算法的一道小实验,初学链表的小伙伴可以参考参考噢
recommend-type

数据结构,课程设计,c语言,一元多项式计算

数据结构,课程设计,c语言,一元多项式计算。顺序结构、动态链表结构下的一元多项式的加法、减法、乘法的实现。 设有一元多项式Am(x)和Bn(x). Am(x)=A0+A1x1+A2x2+A3x3+… +Amxm Bn(x)=B0+B1x1+B2x2+B3x3+… +...
recommend-type

数据结构实验报告之一元多项式求和(链表)报告2.doc

实验内容:一元多项式求和。 把任意给定的两个一元多项式P(x) ,Q(x) 输入计算机,计算它们的和并输出计算结果。 实验内容: 1.问题描述: 一元多项式求和——把任意给定的两个一元多项式P(x) ,Q(x) 输入计算机,...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这