P_train = double(reshape(P_train, f_, 1, 1, M)); P_test = double(reshape(P_test , f_, 1, 1, N)); t_train = t_train'; t_test = t_test' ;
时间: 2023-10-07 08:05:39 浏览: 107
numpy_class.7z
这段代码将训练和测试数据的格式进行了调整。具体来说,P_train 和 P_test 都是原始数据,形状为 (f_, M) 和 (f_, N),其中 f_ 是特征数,M 和 N 分别是训练集和测试集的样本数。reshape 函数将这两个数组转化为形状为 (f_, 1, 1, M) 和 (f_, 1, 1, N) 的四维数组,这样做是为了与神经网络的输入格式相匹配。
同时,t_train 和 t_test 是原始数据的标签,形状为 (1, M) 和 (1, N),这里使用转置操作将它们变成形状为 (M, 1) 和 (N, 1) 的二维数组,以便后续处理。需要注意的是,这里的 double 函数将原始数据转化为双精度浮点数类型。
阅读全文