写出u-net网络模型
时间: 2023-07-26 14:04:02 浏览: 104
U-Net是一个基于卷积神经网络的图像分割模型,它的网络结构如下:
```
U-Net模型结构:
Contracting Path(收缩路径):
2 * [Convolutional layer -> ReLU -> Convolutional layer -> ReLU -> Max pooling]
Expansive Path(扩张路径):
[Transposed convolutional layer -> Concatenation with the cropped feature map from the contracting path ->
Convolutional layer -> ReLU -> Convolutional layer -> ReLU]
Output Layer:
Convolutional layer -> Softmax
```
下面是U-Net的Python代码实现:
```python
import torch
import torch.nn as nn
class UNet(nn.Module):
def __init__(self, in_channels=1, out_channels=2):
super(UNet, self).__init__()
# Contracting Path
self.conv1_1 = nn.Conv2d(in_channels, 64, kernel_size=3, padding=1)
self.relu1_1 = nn.ReLU(inplace=True)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.relu1_2 = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.relu2_1 = nn.ReLU(inplace=True)
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.relu2_2 = nn.ReLU(inplace=True)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.relu3_1 = nn.ReLU(inplace=True)
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.relu3_2 = nn.ReLU(inplace=True)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.relu4_1 = nn.ReLU(inplace=True)
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.relu4_2 = nn.ReLU(inplace=True)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.conv5_1 = nn.Conv2d(512, 1024, kernel_size=3, padding=1)
self.relu5_1 = nn.ReLU(inplace=True)
self.conv5_2 = nn.Conv2d(1024, 1024, kernel_size=3, padding=1)
self.relu5_2 = nn.ReLU(inplace=True)
# Expansive Path
self.upconv6_1 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
self.conv6_2 = nn.Conv2d(1024, 512, kernel_size=3, padding=1)
self.relu6_2 = nn.ReLU(inplace=True)
self.conv6_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.relu6_1 = nn.ReLU(inplace=True)
self.upconv7_1 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.conv7_2 = nn.Conv2d(512, 256, kernel_size=3, padding=1)
self.relu7_2 = nn.ReLU(inplace=True)
self.conv7_1 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.relu7_1 = nn.ReLU(inplace=True)
self.upconv8_1 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.conv8_2 = nn.Conv2d(256, 128, kernel_size=3, padding=1)
self.relu8_2 = nn.ReLU(inplace=True)
self.conv8_1 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.relu8_1 = nn.ReLU(inplace=True)
self.upconv9_1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.conv9_2 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
self.relu9_2 = nn.ReLU(inplace=True)
self.conv9_1 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.relu9_1 = nn.ReLU(inplace=True)
self.conv10 = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
# Contracting Path
x1 = self.conv1_1(x)
x1 = self.relu1_1(x1)
x1 = self.conv1_2(x1)
x1 = self.relu1_2(x1)
x2 = self.pool1(x1)
x2 = self.conv2_1(x2)
x2 = self.relu2_1(x2)
x2 = self.conv2_2(x2)
x2 = self.relu2_2(x2)
x3 = self.pool2(x2)
x3 = self.conv3_1(x3)
x3 = self.relu3_1(x3)
x3 = self.conv3_2(x3)
x3 = self.relu3_2(x3)
x4 = self.pool3(x3)
x4 = self.conv4_1(x4)
x4 = self.relu4_1(x4)
x4 = self.conv4_2(x4)
x4 = self.relu4_2(x4)
x5 = self.pool4(x4)
x5 = self.conv5_1(x5)
x5 = self.relu5_1(x5)
x5 = self.conv5_2(x5)
x5 = self.relu5_2(x5)
# Expansive Path
x6 = self.upconv6_1(x5)
x6 = torch.cat((x6, x4), dim=1)
x6 = self.conv6_2(x6)
x6 = self.relu6_2(x6)
x6 = self.conv6_1(x6)
x6 = self.relu6_1(x6)
x7 = self.upconv7_1(x6)
x7 = torch.cat((x7, x3), dim=1)
x7 = self.conv7_2(x7)
x7 = self.relu7_2(x7)
x7 = self.conv7_1(x7)
x7 = self.relu7_1(x7)
x8 = self.upconv8_1(x7)
x8 = torch.cat((x8, x2), dim=1)
x8 = self.conv8_2(x8)
x8 = self.relu8_2(x8)
x8 = self.conv8_1(x8)
x8 = self.relu8_1(x8)
x9 = self.upconv9_1(x8)
x9 = torch.cat((x9, x1), dim=1)
x9 = self.conv9_2(x9)
x9 = self.relu9_2(x9)
x9 = self.conv9_1(x9)
x9 = self.relu9_1(x9)
x10 = self.conv10(x9)
return x10
```
注:这里的U-Net模型是一个基本的实现,不同的问题可能需要根据实际情况作出适当的调整。
阅读全文