用python写出u-net网络模型的代码
时间: 2023-08-06 14:06:04 浏览: 93
好的,这是一个简单的U-Net网络模型的Python代码实现:
``` python
# 导入必要的库
import tensorflow as tf
# 定义U-Net网络模型
def unet(input_size=(256, 256, 3)):
# 定义输入层
input_layer = tf.keras.layers.Input(input_size)
# 下采样
conv1 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')(input_layer)
conv1 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')(conv1)
pool1 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')(pool1)
conv2 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')(conv2)
pool2 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same')(pool2)
conv3 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same')(conv3)
pool3 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same')(pool3)
conv4 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same')(conv4)
drop4 = tf.keras.layers.Dropout(0.5)(conv4)
pool4 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(drop4)
# 上采样
up5 = tf.keras.layers.Conv2D(1024, 3, activation='relu', padding='same')(pool4)
up5 = tf.keras.layers.Conv2D(1024, 3, activation='relu', padding='same')(up5)
drop5 = tf.keras.layers.Dropout(0.5)(up5)
up6 = tf.keras.layers.Conv2DTranspose(512, 2, strides=(2, 2), padding='same')(drop5)
merge6 = tf.keras.layers.concatenate([drop4, up6], axis=3)
conv6 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same')(merge6)
conv6 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same')(conv6)
up7 = tf.keras.layers.Conv2DTranspose(256, 2, strides=(2, 2), padding='same')(conv6)
merge7 = tf.keras.layers.concatenate([conv3, up7], axis=3)
conv7 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same')(merge7)
conv7 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same')(conv7)
up8 = tf.keras.layers.Conv2DTranspose(128, 2, strides=(2, 2), padding='same')(conv7)
merge8 = tf.keras.layers.concatenate([conv2, up8], axis=3)
conv8 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')(merge8)
conv8 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')(conv8)
up9 = tf.keras.layers.Conv2DTranspose(64, 2, strides=(2, 2), padding='same')(conv8)
merge9 = tf.keras.layers.concatenate([conv1, up9], axis=3)
conv9 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')(merge9)
conv9 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')(conv9)
output_layer = tf.keras.layers.Conv2D(1, 1, activation='sigmoid')(conv9)
# 定义模型
model = tf.keras.models.Model(inputs=input_layer, outputs=output_layer)
return model
```
这个U-Net网络模型是一个经典的图像分割模型,由于其结构简单,效果好,被广泛应用于医疗图像分割、自然图像分割等领域。
阅读全文