yolov5n与yolov5m-cls有什么区别
时间: 2024-02-02 17:10:13 浏览: 277
yolov5n与yolov5m-cls是YOLOv5模型的两个不同版本,它们之间的区别主要体现在模型的大小和性能上。
yolov5n是YOLOv5模型中的一个版本,它是相对较小的模型。它的特点是模型的大小较小,适合在计算资源有限的设备上运行。yolov5n模型在保持较小模型大小的同时,仍然能够提供较高的检测准确率。
yolov5m-cls是YOLOv5模型中的另一个版本,它是相对较大的模型。相比于yolov5n,yolov5m-cls模型具有更多的参数和更高的计算复杂度,因此它在一些计算资源充足的设备上可以提供更高的检测准确率。
总结来说,yolov5n适合在计算资源有限的设备上运行,而yolov5m-cls适合在计算资源充足的设备上运行,并且可以提供更高的检测准确率。
相关问题
如何在yolov5_v6.2版本代码中使用k-means
在yolov5_v6.2版本中,可以使用k-means算法来自动计算聚类中心点,以便更好地初始化锚框。
具体步骤如下:
1. 打开yolov5/data/下的coco.names文件,将其中的类别名称复制到一个txt文件中,每行一个类别名称。
2. 打开yolov5/utils/下的datasets.py文件,将KMeans类添加到文件中,代码如下:
```
from sklearn.cluster import KMeans
class KMeans:
def __init__(self, n_clusters=9, max_iter=300, random_state=0):
self.n_clusters = n_clusters
self.max_iter = max_iter
self.random_state = random_state
def fit(self, X):
kmeans = KMeans(
n_clusters=self.n_clusters,
max_iter=self.max_iter,
random_state=self.random_state
).fit(X)
self.cluster_centers_ = kmeans.cluster_centers_
def predict(self, X):
return KMeans.predict(kmeans, X)
```
3. 打开yolov5/utils/下的general.py文件,将load_dataset函数修改为如下代码:
```
from utils.datasets import KMeans
def load_dataset(data, args, augment=False):
paths, labels = [], []
for path, label in zip(data['train'], data['train_labels']):
if os.path.isfile(path):
paths.append(path)
labels.append(label)
# Load labels
with open(args.classes) as f:
classes = [line.strip() for line in f.readlines()]
# Compute anchor boxes
if args.anchor_t:
if os.path.isfile(args.anchor_t):
# Load anchor boxes from file
with open(args.anchor_t) as f:
anchors = np.array([x.split(',') for x in f.read().strip().split('\n')], dtype=np.float32)
else:
# Compute anchor boxes using k-means clustering
n = len(paths) # number of samples
m = args.anchor_t # number of anchors
dataset = []
for i in tqdm(range(n)):
img_path = paths[i]
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # convert to RGB
h, w = img.shape[:2]
for j, (xmin, ymin, xmax, ymax, cls_id) in enumerate(labels[i]):
# Normalize box coordinates to range [0, 1]
xmin, xmax = xmin / w, xmax / w
ymin, ymax = ymin / h, ymax / h
# Compute box width and height
box_w, box_h = xmax - xmin, ymax - ymin
# Append box width and height to dataset
dataset.append([box_w, box_h])
kmeans = KMeans(n_clusters=m).fit(dataset)
anchors = kmeans.cluster_centers_
# Save anchor boxes to file
with open(args.anchor_t, 'w') as f:
for anchor in anchors:
f.write(','.join(str(x) for x in anchor) + '\n')
else:
anchors = []
# Create dataset
if len(paths) > 0:
dataset = Dataset(
paths=paths,
labels=labels,
classes=classes,
anchors=anchors,
img_size=args.img_size,
augment=augment
)
else:
dataset = None
return dataset
```
4. 执行以下命令来生成锚框:
```
python train.py --data coco.yaml --cfg ./models/yolov5s.yaml --weights '' --verbose --kmeans
```
其中,--kmeans参数表示使用k-means算法来计算锚框。
5. 训练模型前,需要确认yolov5/data/下已经生成了anchors.txt文件,如果没有生成,可以执行以下命令:
```
python train.py --data coco.yaml --cfg ./models/yolov5s.yaml --weights '' --verbose --kmeans --notest
```
其中,--notest参数表示不进行测试,只生成anchors.txt文件。
以上就是在yolov5_v6.2版本中使用k-means算法计算锚框的步骤。
yolov8.models
yolov8.models是一个包含多个yolov8模型文件的压缩包,其中包括了cls_lable.txt yolov8l-cls.pt yolov8m-cls.pt yolov8n-cls.pt yolov8s-cls.pt yolov8x-cls.pt等文件。这些文件可以用于yolov8目标检测任务中。其中,cls_lable.txt是类别标签文件,yolov8l-cls.pt yolov8m-cls.pt yolov8n-cls.pt yolov8s-cls.pt yolov8x-cls.pt是不同大小的yolov8模型文件,可以根据实际需求选择使用。如果需要将yolov8的ptd模型文件导出为onnxy格式,可以使用export.py脚本。此外,还有yolov8摄像头视频实时推理和yolov8图片推理的功能,可以使用yolov8_camera和yolov8_img进行实现。
阅读全文