使用java、scala、python三种语言实现spark rdd的flatmap算子的使用
时间: 2024-06-11 10:09:32 浏览: 169
Java实现:
```java
JavaRDD<String> lines = sc.textFile("path/to/file");
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
public Iterable<String> call(String s) {
return Arrays.asList(s.split(" "));
}
});
```
Scala实现:
```scala
val lines = sc.textFile("path/to/file")
val words = lines.flatMap(line => line.split(" "))
```
Python实现:
```python
lines = sc.textFile("path/to/file")
words = lines.flatMap(lambda line: line.split(" "))
```
相关问题
使用java、scala、python三种语言实现spark rdd的reduce算子的使用
Java:
```
JavaRDD<Integer> numbers = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5));
int sum = numbers.reduce((a, b) -> a + b);
System.out.println(sum);
```
Scala:
```
val numbers = sc.parallelize(Seq(1, 2, 3, 4, 5))
val sum = numbers.reduce(_ + _)
println(sum)
```
Python:
```
numbers = sc.parallelize([1, 2, 3, 4, 5])
sum = numbers.reduce(lambda a, b: a + b)
print(sum)
```
用java,scala,python三种语言实现spark rdd的treeReduce算子
Java实现:
```java
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function2;
public class TreeReduceExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("TreeReduceExample").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10));
Integer result = rdd.treeReduce(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer a, Integer b) throws Exception {
return a + b;
}
});
System.out.println("Result: " + result);
sc.close();
}
}
```
Scala实现:
```scala
import org.apache.spark.{SparkConf, SparkContext}
object TreeReduceExample {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("TreeReduceExample").setMaster("local")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(Seq(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
val result = rdd.treeReduce((a: Int, b: Int) => a + b)
println("Result: " + result)
sc.stop()
}
}
```
Python实现:
```python
from pyspark import SparkConf, SparkContext
conf = SparkConf().setAppName("TreeReduceExample").setMaster("local")
sc = SparkContext(conf=conf)
rdd = sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
result = rdd.treeReduce(lambda a, b: a + b)
print("Result: " + str(result))
sc.stop()
```
阅读全文