用java,scala,python三种语言实现spark rdd的treeAggregate算子
时间: 2024-05-15 11:19:27 浏览: 187
基于Spark实现随机森林代码
Java实现:
```
import org.apache.spark.api.java.JavaRDD;
public class TreeAggregateJava {
public static <T> T treeAggregate(JavaRDD<T> rdd, T zeroValue, TreeAggregateFunction<T> func) {
int depth = (int) Math.ceil(Math.log(rdd.getNumPartitions()) / Math.log(2));
return rdd.treeAggregate(zeroValue, func, depth);
}
public interface TreeAggregateFunction<T> extends org.apache.spark.api.java.function.Function2<T, T, T> {
T apply(T t1, T t2);
@Override
default T call(T t1, T t2) throws Exception {
return apply(t1, t2);
}
}
}
```
Scala实现:
```
import org.apache.spark.rdd.RDD
object TreeAggregateScala {
def treeAggregate[T](rdd: RDD[T], zeroValue: T)(func: (T, T) => T): T = {
val depth = math.ceil(math.log(rdd.getNumPartitions) / math.log(2)).toInt
rdd.treeAggregate(zeroValue)(func, func, depth)
}
}
```
Python实现:
```
from pyspark import RDD
def tree_aggregate(rdd: RDD, zero_value, func):
depth = int(math.ceil(math.log(rdd.getNumPartitions()) / math.log(2)))
return rdd.treeAggregate(zero_value, func, func, depth)
```
阅读全文