使用java、scala、python三种语言实现spark rdd的reduce算子的使用
时间: 2024-05-15 21:16:15 浏览: 134
Java:
```
JavaRDD<Integer> numbers = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5));
int sum = numbers.reduce((a, b) -> a + b);
System.out.println(sum);
```
Scala:
```
val numbers = sc.parallelize(Seq(1, 2, 3, 4, 5))
val sum = numbers.reduce(_ + _)
println(sum)
```
Python:
```
numbers = sc.parallelize([1, 2, 3, 4, 5])
sum = numbers.reduce(lambda a, b: a + b)
print(sum)
```
相关问题
请用java,scala,python三种语言实现spark的reducebykey案例
Java:
```
JavaPairRDD<String, Integer> rdd = ...;
JavaPairRDD<String, Integer> reducedRdd = rdd.reduceByKey((a, b) -> a + b);
```
Scala:
```
val rdd: RDD[(String, Int)] = ...
val reducedRdd = rdd.reduceByKey(_ + _)
```
Python:
```
rdd = sc.parallelize([('a', 1), ('a', 2), ('b', 1), ('b', 2)])
reducedRdd = rdd.reduceByKey(lambda a, b: a + b)
```
使用Spark RDD来分析movies.csv文件,统计每种类型的电影有多少部,用scala编程语言
好的,以下是使用Spark RDD来分析movies.csv文件,统计每种类型的电影有多少部的Scala代码:
```scala
import org.apache.spark.{SparkConf, SparkContext}
val conf = new SparkConf().setAppName("movie analysis")
val sc = new SparkContext(conf)
val data = sc.textFile("movies.csv")
val header = data.first()
val genres = data.filter(line => line != header)
.flatMap(line => line.split(",")(2).split("\\|"))
.distinct()
.collect()
val movieCountByGenre = data.filter(line => line != header)
.flatMap(line => line.split(",")(2).split("\\|").map((_, 1)))
.reduceByKey(_ + _)
.collect()
println("Number of movies by genre:")
for (genre <- genres) {
val count = movieCountByGenre.find(_._1 == genre).map(_._2).getOrElse(0)
println(s"$genre: $count")
}
```
这段代码与Python代码的思路相同,只是使用了Scala语言的语法。