给定训练集train.csv,要求根据前9个小时的空气监测情况预测第10个小时的PM2.5含量代码
时间: 2024-01-21 21:17:16 浏览: 93
以下是使用Python中的Scikit-learn库进行PM2.5含量预测的示例代码:
```python
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
# 读取训练数据
train_data = pd.read_csv('train.csv', encoding='big5')
# 数据预处理
train_data = train_data.iloc[:, 3:]
train_data[train_data == 'NR'] = 0
train_data = train_data.astype(np.float)
x_train = []
y_train = []
for i in range(12):
for j in range(471):
x_train.append(train_data.iloc[j:j+9, i:i+3].values.flatten())
y_train.append(train_data.iloc[j+9, i+2])
x_train = np.array(x_train)
y_train = np.array(y_train)
# 训练模型
model = LinearRegression()
model.fit(x_train, y_train)
# 读取测试数据
test_data = pd.read_csv('test.csv', header=None, encoding='big5')
test_data = test_data.iloc[:, 2:]
test_data[test_data == 'NR'] = 0
test_data = test_data.astype(np.float)
# 数据预处理
x_test = []
for i in range(int(len(test_data)/18)):
for j in range(9):
x_test.append(test_data.iloc[i*18:i*18+18, j:j+3].values.flatten())
x_test = np.array(x_test)
# 预测PM2.5含量
y_pred = model.predict(x_test)
# 输出结果
with open('output.csv', 'w') as f:
f.write('id,value\n')
for i in range(len(y_pred)):
f.write('id_{},{}\n'.format(i, y_pred[i]))
```
注:以上代码中的数据预处理过程为将每个小时的18个监测点的PM2.5、PM10、NO2等6个特征值展开成54维向量,作为输入特征。如需使用其他特征或模型,请根据具体情况进行修改。
阅读全文