生成一段基于PyTorch框架实现传统伪造检测的代码
时间: 2024-05-02 10:23:09 浏览: 115
以下是一个基于 PyTorch 框架实现传统伪造检测的简单代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义模型
class FakeDetectionModel(nn.Module):
def __init__(self):
super(FakeDetectionModel, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(128 * 8 * 8, 1024)
self.fc2 = nn.Linear(1024, 1)
def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = self.pool(nn.functional.relu(self.conv3(x)))
x = torch.flatten(x, 1)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.sigmoid(self.fc2(x))
return x
# 定义训练函数
def train(model, train_loader, optimizer, criterion, device):
model.train()
running_loss = 0.0
for i, (images, labels) in enumerate(train_loader):
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels.float())
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(train_loader)
# 定义测试函数
def test(model, test_loader, criterion, device):
model.eval()
running_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for i, (images, labels) in enumerate(test_loader):
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels.float())
running_loss += loss.item()
predicted = (outputs > 0.5).float()
total += labels.size(0)
correct += (predicted == labels).sum().item()
return running_loss / len(test_loader), correct / total
# 加载数据集
train_data = np.load('train_data.npy')
train_labels = np.load('train_labels.npy')
test_data = np.load('test_data.npy')
test_labels = np.load('test_labels.npy')
# 创建数据加载器
train_set = torch.utils.data.TensorDataset(torch.Tensor(train_data), torch.Tensor(train_labels))
test_set = torch.utils.data.TensorDataset(torch.Tensor(test_data), torch.Tensor(test_labels))
train_loader = torch.utils.data.DataLoader(train_set, batch_size=32, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=32, shuffle=False)
# 定义超参数
learning_rate = 0.001
num_epochs = 10
# 创建模型和优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = FakeDetectionModel().to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.BCELoss()
# 训练模型
for epoch in range(num_epochs):
train_loss = train(model, train_loader, optimizer, criterion, device)
test_loss, test_acc = test(model, test_loader, criterion, device)
print('Epoch [{}/{}], Train Loss: {:.4f}, Test Loss: {:.4f}, Test Accuracy: {:.2f}%'.format(
epoch+1, num_epochs, train_loss, test_loss, test_acc*100))
```
该代码示例中定义了一个名为 `FakeDetectionModel` 的模型,它包含了三个卷积层和两个全连接层。然后使用 `train` 函数和 `test` 函数分别对模型进行训练和测试,并通过定义的数据集加载器来加载数据。最后,使用 PyTorch 提供的优化器和损失函数来训练模型,并输出训练和测试的结果。
阅读全文