聚类matlab meanshift
时间: 2024-06-03 20:05:45 浏览: 124
meanshift聚类算法_matlab_
5星 · 资源好评率100%
以下是MeanShift的Matlab代码演示[^1]:
```matlab
% Mean Shift Clustering Example
% Code written by Dr. Matthew E. Martin
% Assistant Professor, Department of Computer Science
% The University of Oklahoma
%
% This code demonstrates the Mean Shift clustering algorithm
%
% The data set used consists of 1000 points in 3D space.
% These points are divided into two clusters.
% One cluster is centered at position (30,30,30) and the other
% at position (80,80,80)
% Each point in the cluster is normally distributed with a standard
% deviation of 5 units.
%
% The Mean Shift clustering algorithm is then run on this data set and the
% resulting clusters are plotted using different colors for better visualization
%
% NOTE: This code is for educational purposes only and is not intended
% for commercial use without permission from the author.
%
% Code is provided "as is" and the author assumes no responsibility
% for any errors or problems that may arise from using this code.
% Create Data Set
x = [randn(1000,1)*5+30 randn(1000,1)*5+30 randn(1000,1)*5+30; ...
randn(1000,1)*5+80 randn(1000,1)*5+80 randn(1000,1)*5+80];
% Implement Mean Shift
ms = MeanShift();
ms.bandwidth = 8;
ms.min_points = 10;
result = ms.cluster(x);
% Plot Results
figure;
hold on;
scatter3(result(:,1),result(:,2),result(:,3));
view(-115,40);
% Define MeanShift Class
classdef MeanShift
properties
bandwidth = 8;
min_points = 10;
end
methods
function cluster_result = cluster(obj,X)
n = size(X,1);
labels = zeros(n,1);
cluster_center = [];
visited = false(n,1);
for i=1:n
if ~visited(i)
visited(i) = true;
[new_cluster,labels] = obj.pointsInRange(X,X(i,:),visited);
while size(new_cluster,1) > 0
[new_cluster,labels2] = obj.pointsInRange(X,new_cluster(1,:),visited);
if size(new_cluster,1) >= obj.min_points
labels(labels2) = size(cluster_center,1)+1;
cluster_center = [cluster_center; mean(new_cluster)];
end
visited(labels2) = true;
new_cluster(1,:) = [];
end
if labels(i) == 0
cluster_center = [cluster_center; X(i,:)];
labels(i) = size(cluster_center,1);
end
end
end
cluster_result = cluster_center(labels,:);
end
function [new_cluster,labels] = pointsInRange(obj,X,x,visited)
distance = sqrt(sum((X-repmat(x,size(X,1),1)).^2,2));
in_range = distance < obj.bandwidth;
labels = find(in_range);
new_cluster = X(in_range,:);
new_cluster = new_cluster(~visited(in_range),:);
end
end
end
```
另外,还可以使用Python实现Mean Shift聚类算法,以下是Python代码示例[^2]:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import MeanShift, estimate_bandwidth
from itertools import cycle
#Input dataset
X = np.array([[1, 2], [1, 4], [1, 0],
[10, 2], [10, 4], [10, 0]])
#Estimate bandwidth
bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)
#Fit mean shift algorithm to data
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
#Extract cluster assignments for each data point
labels = ms.labels_
#Extract centroids
centroids = ms.cluster_centers_
#Number of clusters
n_clusters_ = len(np.unique(labels))
#Plot result
print("Number of estimated clusters : %d" % n_clusters_)
colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):
my_members = labels == k
cluster_center = centroids[k]
plt.plot(X[my_members, 0], X[my_members, 1], col + '.')
plt.plot(cluster_center, cluster_center, 'o', markerfacecolor=col,
markeredgecolor='k', markersize=14)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
```
阅读全文