ValueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).
时间: 2024-05-19 20:12:34 浏览: 695
This error occurs when you try to convert a dataframe to a numpy array, but one or more columns in the dataframe contains mixed data types (i.e. some values are strings and others are numerical).
To fix this error, you can try the following:
1. Check the data types of each column in your dataframe using `df.dtypes`. If you find any columns with `dtype = object`, it may contain mixed data types.
2. Convert the problematic columns to a consistent data type. For example, you can convert all values in the column to strings using `df['column_name'] = df['column_name'].astype(str)`.
3. If you still encounter the error after step 2, you can try replacing any non-numeric values with `NaN` using `pd.to_numeric(df['column_name'], errors='coerce')`. This will convert any non-numeric values to `NaN`, which can then be easily dropped or replaced with a default value.
4. Once you have cleaned up your data, try converting the dataframe to a numpy array again using `np.asarray(df)`.
阅读全文