def fitness_function(individual): big_loop_trains, small_loop_trains, small_loop_start, small_loop_end = individual small_loop_length = small_loop_end - small_loop_start if small_loop_length < min_small_loop_stations or small_loop_length > max_small_loop_stations: return 1e9, cost = (big_loop_trains + small_loop_trains) * (stations - 1) * min_interval + average_boarding_time * passengers_per_train * (big_loop_trains + small_loop_trains) return cost,分析代码
时间: 2023-06-09 17:02:42 浏览: 90
这段代码定义了一个函数名为 "fitness_function",并且它接受一个参数 "individual"。这个参数似乎是一个元组,其中包含了一些值,包括 "big_loop_trains"、"small_loop_trains"、"small_loop_start"、"small_loop_end"。函数的目的是计算这些参数的成本,并根据某些条件返回一个代价值。返回的是一个包含两个元素的元组。如果不符合给定条件,则代价值会被设定为 1e9。在计算代价值时使用了一些乘法运算,其中包括"stations"、"min_interval"、"average_boarding_time"、"passengers_per_train"等变量。需要根据更多的上下文信息才能全面理解函数的作用和目的。
相关问题
import deap import random from deap import base, creator, tools, algorithms import numpy as np import pandas as pd # 参数 stations = 30 start_end_stations = [1, 2, 5, 8, 10, 14, 17, 18, 21, 22, 25, 26, 27, 30] min_interval = 108 min_stopping_time = 20 max_stopping_time = 120 passengers_per_train = 1860 min_small_loop_stations = 3 max_small_loop_stations = 24 average_boarding_time = 0.04 # 使用 ExcelFile ,通过将 xls 或者 xlsx 路径传入,生成一个实例 stations_kilo1 = pd.read_excel(r'D:\桌面\附件2:区间运行时间(1).xlsx', sheet_name="Sheet1") stations_kilo2 = pd.read_excel(r'D:\桌面\附件3:OD客流数据(1).xlsx', sheet_name="Sheet1") stations_kilo3 = pd.read_excel(r'D:\桌面\附件4:断面客流数据.xlsx', sheet_name="Sheet1") print(stations_kilo1) print(stations_kilo2) print(stations_kilo3) # 适应度函数 def fitness_function(individual): big_loop_trains, small_loop_trains, small_loop_start, small_loop_end = individual small_loop_length = small_loop_end - small_loop_start if small_loop_length < min_small_loop_stations or small_loop_length > max_small_loop_stations: return 1e9, cost = (big_loop_trains + small_loop_trains) * (stations - 1) * min_interval + average_boarding_time * passengers_per_train * (big_loop_trains + small_loop_trains) return cost, # 创建适应度和个体类 creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", list, fitness=creator.FitnessMin) # 注册初始化函数 toolbox = base.Toolbox() toolbox.register("big_loop_trains", random.randint, 1, 10) toolbox.register("small_loop_trains", random.randint, 1, 10) toolbox.register("small_loop_start", random.choice, start_end_stations) toolbox.register("small_loop_end", random.choice, start_end_stations) toolbox.register("individual", tools.initCycle, creator.Individual, (toolbox.big_loop_trains, toolbox.small_loop_trains, toolbox.small_loop_start, toolbox.small_loop_end), n=1) toolbox.register("population", tools.initRepeat, list, toolbox.individual) # 注册遗传算法操作 toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutUniformInt, low=[1, 1, min(start_end_stations), min(start_end_stations)], up=[10, 10, max(start_end_stations), max(start_end_stations)], indpb=0.5) toolbox.register("select", tools.selBest) toolbox.register("evaluate", fitness_function) # 设置遗传算法参数 population_size = 100 crossover_probability = 0.8 mutation_probability = 0.2 num_generations = 100 # 初始化种群 population = toolbox.population(n=population_size) # 进化 for gen in range(num_generations): offspring = algorithms.varAnd(population, toolbox, cxpb=crossover_probability, mutpb=mutation_probability) fits = toolbox.map(toolbox.evaluate, offspring) for fit, ind in zip(fits, offspring): ind.fitness.values = fit population = toolbox.select(offspring, k=len(population)) # 找到最佳个体 best_individual = tools.selBest(population, k=1)[0] # 解码最佳个体 big_loop_trains, small_loop_trains, small_loop_start, small_loop_end = best_individual # 输出结果 print("Big Loop Trains:", big_loop_trains) print("Small Loop Trains:", small_loop_trains) print("Small Loop Start Station:", small_loop_start) print("Small Loop End Station:", small_loop_end)分析代码
这段代码是Python中导入了多个第三方库,包括deap、random、numpy和pandas,并使用了它们中的一些函数和类。其中,deap库用于遗传算法和进化计算方面的应用,numpy库用于科学计算和数学运算,pandas库用于数据处理和分析。在这段代码中,creator、tools和algorithms是deap库中的子模块,用于创建遗传算法的初始种群、定义适应度函数和执行遗传算法的演化过程。
def train_generate(dataset, batch_size, few, symbol2id, ent2id, e1rel_e2):解析代码
This function trains a generator model on a given dataset using batch size and few-shot learning techniques. The input parameters are:
- dataset: The dataset used for training.
- batch_size: The number of samples in each batch.
- few: The number of samples used for few-shot learning.
- symbol2id: A dictionary that maps symbols to their corresponding IDs.
- ent2id: A dictionary that maps entities to their corresponding IDs.
- e1rel_e2: A dictionary that maps a tuple of (entity1, relation, entity2) to its corresponding ID.
The function first initializes the generator model, optimizer and loss function. It then loops through the dataset in batches and performs few-shot learning on each batch using the given number of samples. The model is trained using backpropagation and the loss is calculated at each step. Finally, the function returns the trained generator model.
阅读全文