用Python编写代码在此代码下利用Astar算法寻路,其中p为随机生成障碍物的概率:class randomMAP: def init(self, size, start, goal, p): self.size = size self.start = start self.goal = goal self.p = p def creatmap(self): self.map =np.zeros(self.size, dtype='int') for i in range(self.map.shape[0]): for j in range(self.map.shape[1]): if (i != self.start[0] or j != self.start[1]) and (i != self.goal[0] or j != self.goal[1]) and random.random() < self.p: self.map[i][j] = 5 map1 = randomMAP((20, 20), (0, 0), (19, 19), 0.3) map1.creatmap() print(map1.map) plt.matshow(map1.map) plt.show()
时间: 2024-01-30 22:03:40 浏览: 91
这段代码创建了一个随机地图,其中包含随机生成的障碍物。使用A*算法寻路需要先定义节点类,然后实现A*算法的具体逻辑。下面是一个简单的实现,可以根据自己的需求进行修改:
```python
import numpy as np
import random
import heapq
import matplotlib.pyplot as plt
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.g = 0
self.h = 0
self.f = 0
self.parent = None
def __lt__(self, other):
return self.f < other.f
class AStar:
def __init__(self, start, goal, map):
self.start = start
self.goal = goal
self.map = map
def heuristic(self, a, b):
# 曼哈顿距离作为启发函数
return abs(a.x - b.x) + abs(a.y - b.y)
def get_neighbors(self, node):
neighbors = []
for i in range(-1, 2):
for j in range(-1, 2):
if i == 0 and j == 0:
continue
x = node.x + i
y = node.y + j
if x < 0 or x >= self.map.shape[0] or y < 0 or y >= self.map.shape[1]:
continue
if self.map[x][y] == 5:
continue
neighbors.append(Node(x, y))
return neighbors
def search(self):
open_list = []
closed_list = []
start_node = Node(self.start[0], self.start[1])
goal_node = Node(self.goal[0], self.goal[1])
heapq.heappush(open_list, start_node)
while len(open_list) > 0:
current_node = heapq.heappop(open_list)
if current_node.x == goal_node.x and current_node.y == goal_node.y:
path = []
while current_node is not None:
path.append((current_node.x, current_node.y))
current_node = current_node.parent
return path[::-1]
closed_list.append(current_node)
for neighbor in self.get_neighbors(current_node):
if neighbor in closed_list:
continue
neighbor.g = current_node.g + 1
neighbor.h = self.heuristic(neighbor, goal_node)
neighbor.f = neighbor.g + neighbor.h
neighbor.parent = current_node
if neighbor not in open_list:
heapq.heappush(open_list, neighbor)
return None
class randomMAP:
def __init__(self, size, start, goal, p):
self.size = size
self.start = start
self.goal = goal
self.p = p
def creatmap(self):
self.map = np.zeros(self.size, dtype='int')
for i in range(self.map.shape[0]):
for j in range(self.map.shape[1]):
if (i != self.start[0] or j != self.start[1]) and (i != self.goal[0] or j != self.goal[1]) and random.random() < self.p:
self.map[i][j] = 5
map1 = randomMAP((20, 20), (0, 0), (19, 19), 0.3)
map1.creatmap()
print(map1.map)
astar = AStar(map1.start, map1.goal, map1.map)
path = astar.search()
if path is None:
print("No path found")
else:
print(path)
plt.matshow(map1.map)
if path is not None:
path_x = [x for (x, y) in path]
path_y = [y for (x, y) in path]
plt.plot(path_y, path_x, 'r')
plt.show()
```
这个实现中,为了方便起见,启发函数使用的是曼哈顿距离。如果需要更高的精度,可以使用欧几里得距离或其他启发函数。
阅读全文