用python实现上述过程,详细写出算法的过程,其中算法的参数用常见的默认值。
时间: 2024-04-14 16:26:05 浏览: 471
基于Python实现手写数字识别的KNN算法实例
以下是一个用Python实现无线传感器定位的示例代码,其中使用了布谷鸟算法、粒子群算法和DV-HOP算法:
```python
import random
import math
import matplotlib.pyplot as plt
# 设置参数
space_size = 100 # 空间大小,100m*100m
sensor_count = 100 # 传感器节点数量
anchor_count = 30 # 锚节点数量
unknown_count = 70 # 未知节点数量
bird_population = 50 # 布谷鸟种群大小
bird_iterations = 100 # 布谷鸟迭代次数
particle_count = 50 # 粒子数量
particle_iterations = 100 # 粒子迭代次数
hop_threshold = 10 # DV-HOP阈值,跳数最大值
# 随机生成节点位置
anchor_nodes = [(random.uniform(0, space_size), random.uniform(0, space_size)) for _ in range(anchor_count)]
unknown_nodes = [(random.uniform(0, space_size), random.uniform(0, space_size)) for _ in range(unknown_count)]
# 布谷鸟算法优化
def cuckoo_search():
best_positions = unknown_nodes[:] # 初始化最优位置为初始位置
for _ in range(bird_iterations):
# 计算适应度值
fitness_values = [calculate_fitness(position) for position in best_positions]
# 更新位置和速度
for i in range(bird_population):
step_size = random.uniform(0, 1) * space_size / math.sqrt(bird_iterations)
step_direction = random.choice([-1, 1])
new_position = (best_positions[i][0] + step_direction * step_size,
best_positions[i][1] + step_direction * step_size)
new_position = clip_position(new_position) # 限制位置在空间范围内
# 更新最优位置
if calculate_fitness(new_position) > fitness_values[i]:
best_positions[i] = new_position
return best_positions
# 粒子群算法优化
def particle_swarm_optimization():
best_positions = cuckoo_search() # 使用布谷鸟算法的结果作为初始位置
velocities = [(random.uniform(-1, 1), random.uniform(-1, 1)) for _ in range(particle_count)]
for _ in range(particle_iterations):
# 计算适应度值
fitness_values = [calculate_fitness(position) for position in best_positions]
# 更新位置和速度
for i in range(particle_count):
inertia_weight = 0.5
cognitive_weight = 0.5
social_weight = 0.5
cognitive_velocity = (velocities[i][0] * inertia_weight +
cognitive_weight * random.uniform(0, 1) * (best_positions[i][0] - unknown_nodes[i][0]) +
social_weight * random.uniform(0, 1) * (best_positions[i][0] - best_positions[i][0]))
cognitive_velocity = max(-1, min(cognitive_velocity, 1))
social_velocity = (velocities[i][1] * inertia_weight +
cognitive_weight * random.uniform(0, 1) * (best_positions[i][1] - unknown_nodes[i][1]) +
social_weight * random.uniform(0, 1) * (best_positions[i][1] - best_positions[i][1]))
social_velocity = max(-1, min(social_velocity, 1))
velocities[i] = (cognitive_velocity, social_velocity)
new_position = (best_positions[i][0] + cognitive_velocity, best_positions[i][1] + social_velocity)
new_position = clip_position(new_position) # 限制位置在空间范围内
# 更新最优位置
if calculate_fitness(new_position) > fitness_values[i]:
best_positions[i] = new_position
return best_positions
# DV-HOP算法定位
def dv_hop(localized_nodes):
hop_distances = [[get_distance(node1, node2) for node2 in localized_nodes] for node1 in localized_nodes]
for i in range(unknown_count):
hop_count = 0
while hop_count < hop_threshold:
candidate_nodes = [j for j in range(sensor_count) if hop_distances[i][j] <= hop_count]
if len(candidate_nodes) >= anchor_count:
estimated_x = sum(localized_nodes[j][0] for j in candidate_nodes) / anchor_count
estimated_y = sum(localized_nodes[j][1] for j in candidate_nodes) / anchor_count
localized_nodes[i] = (estimated_x, estimated_y)
break
hop_count += 1
return localized_nodes
# 计算适应度值
def calculate_fitness(position):
return sum(get_distance(position, anchor_node) for anchor_node in anchor_nodes)
# 获取两点之间的距离
def get_distance(point1, point2):
return math.sqrt((point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2)
# 限制位置在空间范围内
def clip_position(position):
return (max(0, min(position[0], space_size)), max(0, min(position[1], space_size)))
# 节点本地化
localized_unknown_nodes = dv_hop(particle_swarm_optimization())
# 绘制节点分布图
plt.figure(figsize=(6, 6))
plt.scatter([node[0] for node in anchor_nodes], [node[1] for node in anchor_nodes], c='r', marker='o', label='Anchor Nodes')
plt.scatter([node[0] for node in localized_unknown_nodes], [node[1] for node in localized_unknown_nodes], c='b', marker='o', label='Localized Unknown Nodes')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Node Distribution')
plt.legend()
plt.grid(True)
plt.xlim(0, space_size)
plt.ylim(0, space_size)
plt.show()
# 计算节点定位误差
errors = [get_distance(unknown_nodes[i], localized_unknown_nodes[i]) for i in range(unknown_count)]
average_error = sum(errors) / unknown_count
print(f"节点定位误差: {average_error}m")
# 计算节点本地化成功率
success_rate = sum(error <= hop_threshold for error in errors) / unknown_count
print(f"节点本地化成功率: {success_rate * 100}%")
```
请注意,以上代码仅为示例实现,可能需要根据具体情况进行调整和优化。另外,节点本地化的成功率和节点定位误差可能受到算法参数的影响,您可以根据实际需求调整参数来获得更好的结果。
阅读全文