请解释一下np.random.seed(seed) kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=seed)
时间: 2024-05-26 15:12:48 浏览: 178
np.random.seed(seed)是设置随机种子,可以使得程序中的随机结果可重复,因为每次产生的随机数序列都是相同的。StratifiedKFold是将训练/测试数据集划分为k个互斥的子集,保证每个子集数据分布相同。shuffle=True表示在划分之前先打乱数据集的顺序,random_state=seed是设置随机种子,可以使每次划分得到相同的结果。
相关问题
下面这段代码用了哪种数学建模方法fold = 5 for model_seed in range(num_model_seed): print(seeds[model_seed],"--------------------------------------------------------------------------------------------") oof_cat = np.zeros(X_train.shape[0]) prediction_cat = np.zeros(X_test.shape[0]) skf = StratifiedKFold(n_splits=fold, random_state=seeds[model_seed], shuffle=True) for index, (train_index, test_index) in enumerate(skf.split(X_train, y)): train_x, test_x, train_y, test_y = X_train[feature_name].iloc[train_index], X_train[feature_name].iloc[test_index], y.iloc[train_index], y.iloc[test_index] dtrain = lgb.Dataset(train_x, label=train_y) dval = lgb.Dataset(test_x, label=test_y) lgb_model = lgb.train( parameters, dtrain, num_boost_round=10000, valid_sets=[dval], early_stopping_rounds=100, verbose_eval=100, ) oof_cat[test_index] += lgb_model.predict(test_x,num_iteration=lgb_model.best_iteration) prediction_cat += lgb_model.predict(X_test,num_iteration=lgb_model.best_iteration) / fold feat_imp_df['imp'] += lgb_model.feature_importance() del train_x del test_x del train_y del test_y del lgb_model oof += oof_cat / num_model_seed prediction += prediction_cat / num_model_seed gc.collect()
这段代码使用了交叉验证的方法(StratifiedKFold)来评估LightGBM模型的性能,并且使用了平均化的方法(num_model_seed)来减少模型的方差。其中,变量fold表示交叉验证折数,num_model_seed表示重复训练模型的次数。在每次交叉验证中,将训练数据(train_x)和测试数据(test_x)分别作为模型的训练集和验证集,使用LightGBM模型进行训练,并在验证集上进行早停策略(early_stopping_rounds),以避免模型过拟合。在训练过程中,记录并累加训练集和测试集的预测结果(oof_cat和prediction_cat),并计算特征重要性(feat_imp_df['imp'])。最后,使用平均化的方式计算oof和prediction,并释放不再使用的内存(gc.collect())。
解释以下代码:def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test
这段代码定义了一个函数`cv_model`,用于进行交叉验证和模型训练。函数的输入包括分类器`clf`,训练数据`train_x`和`train_y`,测试数据`test_x`,以及分类器名称`clf_name`。函数的输出为测试数据的预测结果。具体的实现步骤如下:
1. 将训练数据分为5折,设置随机种子为2021。
2. 初始化`test`数组,用于存储每一折的测试数据预测结果。
3. 使用`OneHotEncoder`进行标签编码,将分类器输出的标签转换为one-hot编码。
4. 针对每一折的训练数据和验证数据,使用指定的分类器进行模型训练。如果分类器名称为"lgb",则使用LightGBM进行训练。在LightGBM的训练过程中,使用了早停策略和交叉验证,以避免过拟合和提高模型的泛化性能。训练完成后,对验证数据进行预测,并将预测结果存储在`val_pred`中。同时,对测试数据进行预测,并将预测结果存储在`test_pred`中。
5. 将`val_y`和`val_pred`作为输入,调用`abs_sum`函数计算模型的评价指标。将评价指标存储在`cv_scores`中,并输出评价指标的值。
6. 将每一折的测试数据预测结果累加到`test`数组中。
7. 计算所有折的评价指标的平均值和标准差,并输出结果。
8. 将`test`数组除以折数,得到测试数据的平均预测结果,并将其作为函数的输出返回。
阅读全文