abs_IL=abs(IL_var- IL_const);但是abs是非线性算子,需要通过线性化实现

时间: 2024-05-18 10:16:38 浏览: 7
对于绝对值函数 abs(x),我们可以将其线性化为以下形式: 当 x >= 0 时,abs(x) = x; 当 x < 0 时,abs(x) = -x。 因此,我们可以将原式中的 abs(IL_var - IL_const) 分别线性化为: 当 IL_var >= IL_const 时,abs_IL = IL_var - IL_const; 当 IL_var < IL_const 时,abs_IL = IL_const - IL_var。 这样,我们就可以通过线性函数的形式来实现非线性函数 abs(x) 的计算了。
相关问题

约束条件abs_IL=abs(IL_var- IL_const);但是abs是非线性算子,需要通过线性化实现,用matlab的yalmip给出

可以使用YALMIP的非凸函数来定义绝对值的线性化。具体实现步骤如下: 1. 定义新的变量`z`来代替绝对值`abs_IL`,即`z=abs(IL_var-IL_const)`。 2. 引入两个新的非负变量`p`和`q`,并使用线性约束将其限制在非负区间内,即`p>=0`和`q>=0`。 3. 引入一个新的等式约束来将`z`表示为`p-q`,即`z=p-q`。 4. 引入两个新的不等式约束来线性化绝对值,即`-p<=IL_var-IL_const<=q`。 将以上约束条件放入YALMIP中,可以得到如下代码: ``` IL_var = sdpvar(1); % 定义IL_var为变量 IL_const = 2; % 定义IL_const为常数,这里取2作为示例 z = sdpvar(1); % 定义新的变量z p = sdpvar(1); % 定义非负变量p q = sdpvar(1); % 定义非负变量q % 定义线性约束 constraints = [p >= 0, q >= 0]; % 定义等式约束 constraints = [constraints, z == p - q]; % 定义不等式约束 constraints = [constraints, -p <= IL_var - IL_const, IL_var - IL_const <= q]; ``` 最后,可以使用YALMIP的求解器来求解问题,例如使用`optimize`函数求解最小化问题: ``` objective = ... % 定义目标函数 options = sdpsettings('solver', 'gurobi'); % 定义求解器 sol = optimize(constraints, objective, options); % 求解问题 ``` 注意,以上代码中的求解器为Gurobi,需要先安装Gurobi并将其与YALMIP连接起来。具体安装和配置方法可以参考YALMIP和Gurobi的官方文档。

约束条件abs_IL=abs(IL_var- IL_const);但是abs是非线性算子,需要通过线性化实现,用matlab的yalmip中的cplex求解

可以使用YALMIP的非凸函数来定义绝对值的线性化。具体实现步骤如下: 1. 定义新的变量`z`来代替绝对值`abs_IL`,即`z=abs(IL_var-IL_const)`。 2. 引入两个新的非负变量`p`和`q`,并使用线性约束将其限制在非负区间内,即`p>=0`和`q>=0`。 3. 引入一个新的等式约束来将`z`表示为`p-q`,即`z=p-q`。 4. 引入两个新的不等式约束来线性化绝对值,即`-p<=IL_var-IL_const<=q`。 将以上约束条件放入YALMIP中,可以得到如下代码: ``` IL_var = sdpvar(1); % 定义IL_var为变量 IL_const = 2; % 定义IL_const为常数,这里取2作为示例 z = sdpvar(1); % 定义新的变量z p = sdpvar(1); % 定义非负变量p q = sdpvar(1); % 定义非负变量q % 定义线性约束 constraints = [p >= 0, q >= 0]; % 定义等式约束 constraints = [constraints, z == p - q]; % 定义不等式约束 constraints = [constraints, -p <= IL_var - IL_const, IL_var - IL_const <= q]; % 定义求解器选项 options = sdpsettings('solver', 'cplex'); % 定义目标函数 objective = ... % 这里填入你的目标函数 % 使用求解器求解问题 sol = optimize(constraints, objective, options); ``` 注意,以上代码中的求解器为CPLEX,需要先安装CPLEX并将其与YALMIP连接起来。具体安装和配置方法可以参考YALMIP和CPLEX的官方文档。

相关推荐

text/x-c
#include <stdio.h> #include <stdlib.h> //以下为函数运行结果状态代码 #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 #define LIST_INIT_SIZE 5 //线性表存储空间的初始分配量 #define LISTINCREMENT 1 //线性表存储空间分配增量 typedef int Status; //函数类型,其值为为函数结果状态代码 typedef int ElemType; //假设数据元素为整型 typedef struct { ElemType *elem; //存储空间基址 int length; //当前长度 int listsize; //当前分配的存储容量 }Sqlist; //实现线性表的顺序存储结构的类型定义 static Sqlist L;//为了引用方便,定义为全局变量 static ElemType element; /////////////////////////////////////// //函数名:InitList() //参数:SqList L //初始条件:无 //功能:构造一个空线性表 //返回值:存储分配失败:OVERFLOW // 存储分配成功:OK /////////////////////////////////////// Status InitList(Sqlist L) { L.elem=(ElemType*)malloc(LIST_INIT_SIZE*sizeof(ElemType)); if(L.elem==NULL) exit(OVERFLOW); else { L.length=0; L.listsize=LISTINCREMENT; return OK; } } /////////////////////////////////////// //函数名:DestroyList() //参数:SqList L //初始条件:线性表L已存在 //功能:销毁线性表 //返回值:L.elem==NULL:ERROR // L.elem!=NULL:OK /////////////////////////////////////// Status DestroyList(Sqlist L) { if(L.elem==NULL) return ERROR; else free(L.elem); return OK; } /////////////////////////////////////// //函数名:ClearList() //参数:SqList L //初始条件:线性表L已存在 //功能:清空线性表 //返回值:L.elem==NULL:ERROR // L.elem!=NULL:OK /////////////////////////////////////// Status ClearList(Sqlist L) { if(L.elem==NULL) exit(ERROR); int i; ElemType *p_elem=L.elem; for(i=0;i<L.length;i++) { *L.elem=NULL; L.elem++; } L.elem=p_elem; return OK; } /////////////////////////////////////// //函数名:ListEmpty() //参数:SqList L //初始条件:线性表L已存在 //功能:判断线性表是否为空 //返回值:空:TRUE // 非空:FALSE /////////////////////////////////////// Status ListEmpty(Sqlist L) { int i; ElemType *p_elem=L.elem; for(i=0;i<L.length;i++) { if(*L.elem!=0) { L.elem=p_elem; return FALSE; } L.elem++; } return TRUE; } /////////////////////////////////////// //函数名:ListLength() //参数:SqList L //初始条件:线性表L已存在 //功能:返回线性表长度 //返回值:线性表长度(L.length) /////////////////////////////////////// int ListLength(Sqlist L) { return L.length; } /////////////////////////////////////// //函数名:GetElem() //参数:SqList L,int i,ElemType *element //初始条件:线性表L已存在,1<=i<=ListLength(L) //功能:用e返回线性表中第i个元素的值 //返回值:(i<1)||(i>ListLength(L)):OVERFLOW // 1<=i<=ListLength(L):OK /////////////////////////////////////// Status GetElem(Sqlist L,int i) { int j; ElemType *p_elem=L.elem; if(i<1||i>L.length) return OVERFLOW; for(j=1;j<=i;j++) L.elem++; element=*L.elem; L.elem=p_elem; return OK; } /////////////////////////////////////// //函数名:LocateElem() //参数:Sqlist L,ElemType element //初始条件:线性表L已存在 //功能:返回顺序表L中第1个与element相等的元素 //返回值:若在L中存在于element相等的元素:其位序 // 若在L中不存在与element相等的元素:0 /////////////////////////////////////// int LocationElem(Sqlist L,ElemType element) { int i; ElemType *p_elem=L.elem; for(i=1;i<L.length;i++) { if(*L.elem==element) { L.elem=p_elem; return i; } else L.elem++; } return 0; } /////////////////////////////////////// //函数名:PriorElem() //参数:Sqlist L,ElemType cur_e,ElemType *pre_e //初始条件:线性表L已存在,i>1&&i<=L.length,LocationElem()存在 //功能:用pre_e返回线性表中cur_e的前驱 //返回值:i<=1||i>L.length:OVERFLOW // i>1&&i<=L.length:OK /////////////////////////////////////// Status PriorElem(Sqlist L,ElemType cur_e,ElemType *pre_e) { ElemType *p_elem=L.elem; int i,j; i=LocationElem(L,cur_e); if(i<=1||i>L.length) exit(OVERFLOW); for(j=1;j<i;j++) { if(j==(i-1)) { pre_e=L.elem; L.elem=p_elem; return OK; } else L.elem++; } } /////////////////////////////////////// //函数名:NextElem() //参数:Sqlist L,ElemType cur_e,ElemType *next_e //初始条件:线性表L已存在,i>=1&&i<L.length,LocationElem()存在 //功能:用next_e返回线性表中cur_e的后继 //返回值:i<1||i>=L.length:OVERFLOW // i>=1&&i<L.length:OK /////////////////////////////////////// Status NextElem(Sqlist L,ElemType cur_e,ElemType *next_e) { ElemType *p_elem; int i,j; i=LocationElem(L,cur_e); if(i<1||i>=L.length) exit(OVERFLOW); for(j=1;j<i;j++) { if(j==(i-1)) { next_e=L.elem; L.elem=p_elem; return OK; } else L.elem++; } } /////////////////////////////////////// //函数名:ListInsert() //参数:SqList L,int i,ElemType e //初始条件:线性表L已存在,1<=i<=ListLength(L)+1 //功能:在线性表中第i个数据元素之前插入数据元素e //返回值:失败:ERROR // 成功:OK /////////////////////////////////////// Status ListInsert(Sqlist L,int i,ElemType e) { int *q=&(L.elem[i-1]); ElemType *newbase,*p; if(i<1||i>(L.length+1)) return ERROR; if(L.length>=L.listsize) { newbase=(ElemType*)realloc(L.elem,L.listsize+LISTINCREMENT*sizeof(ElemType)); if(newbase==NULL) exit(OVERFLOW); L.elem=newbase; L.listsize+=LISTINCREMENT; } for(p=&(L.elem[L.length-1]);p>=q;--p) *(p+1)=*p; *q=e; ++L.length; return OK; } /////////////////////////////////////// //函数名:ListDelete() //参数:SqList L,int i,Elemtype e //初始条件:线性表L已存在,1<=i<=ListLength(L) //功能:将线性表L中第i个数据元素删除 //返回值:失败:ERROR // 成功:OK /////////////////////////////////////// Status ListDelet(Sqlist L,int i,ElemType e) { if(i<1||(i>L.length)) return ERROR; ElemType *p,*q; p=&(L.elem[i-1]); e=*p; q=L.elem+L.length-1; for(++p;p<=q;++p) *(p-1)=*p; --L.length; return OK; }

帮我优化以下 const val LOAD_H5_SUCCESS="appLoadH5Success" //H5加载完成 const val APP_START_ACTIVITY="appStartActivity" const val GET_GAODE_LOCATION = "appGetGaoDeLocation" //获取定位 const val BARCODESCANNER_SCAN = "appBarcodescannerScan" //扫码 const val APP_GET_FILE_BASE64 = "appGetFileBase64" const val CAMERA_UPLOAD = "appCameraUpload" //调取拍照的功能 const val CREDENTIALS_CAMERA_UPLOAD = "appCredentialsCameraUpload" //调取证件拍照的功能 const val SCAN_BLUETOOTH = "appScanBluetooth" const val APP_DISCONNECT_BLE="appDisConnectBle" const val TH_PRINT = "appThPrint" const val GET_TH_WEIGHT = "appGetThWeight" const val GET_SJ_WEIGHT = "appGetSjWeight" const val PDA_PRINT = "appPdaPrint" const val GALLERY_UPLOAD = "appGalleryUpload" //上传文件 const val CREDENTIALS_GALLERY_UPLOAD = "appCredentialsGalleryUpload" //证件本地文件上传 const val FILE_UPLOAD = "appFileUpload" const val CLEAR_CACHE = "appClearCache" //清理缓存 const val GET_CACHE_SIZE = "appGetCacheSize" //获取缓存 const val DOWNLOAD_FILE = "appDownloadFile" const val PHONE_DEVICE = "appPhoneDevice" //H5获取手机设备信息 const val MEDIA_START_RECORD = "appMediaStartRecord" //开启录音 const val MEDIA_STOP_RECORD = "appMediaStopRecord" //结束录音 const val PDA_SCAN = "appPdaScan" const val APP_BLE_CONNECTED = "appBleConnected" const val APP_BLE_CONNECTED_BY_PARAMS = "appBleConnectedByParams" const val APP_USB_CONNECTED = "appUsbConnected" const val APP_CONNECT_USB = "appConnectUsb" const val APP_BACK_PAGE = "appBackPage" const val APP_LOGOUT="appLogout" //退出登录 const val APP_LOGOUT_MESSAGE="appLogoutMessage" //402 401 提示 const val APP_TOKEN_TIMEOUT="appTokenTimeOut" //token过期 const val APP_TO_BACKLOG="appToBacklog" //返回工作台 const val APP_REFRESH_BACKLOG="appRefreshBacklog" //刷新工作台 const val APP_REFRESH_BACKLOG_NUM="appRefreshBacklogNum" //刷新工作台数量 const val APP_CLOSE_MULTI_CHOOSE="appCloseMultiChoose" const val APP_SET_ORG_DATA="appSetOrgData"

最新推荐

recommend-type

详细解析命令行的getopt_long()函数

int getopt_long(int argc, char * const argv[], const char *optstring, const struct option *longopts, int *longindex); ``` - `argc`: 命令行参数的计数,通常从 `main()` 函数的 `argc` 参数传递。 - `argv`...
recommend-type

linux创建线程之pthread_create的具体使用

 int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict_attr,void*(*start_rtn)(void*),void *restrict arg); 返回值  若成功则返回0,否则返回出错编号 参数  第一个参数为指向线程...
recommend-type

Linux中mkdir函数与Windows中_mkdir函数的区别

为了实现跨平台兼容性,可以使用如POSIX的`mkdir`,并通过条件编译指令来适应不同的操作系统。例如: ```c #include #include #include int create_directory(const char *pathname, mode_t mode) { #ifdef _...
recommend-type

C++标准库:std_set作为一个有序集合

3. 查找元素:使用find函数可以在集合中查找元素,例如`std::set&lt;int&gt;::const_iterator result = set.find(98)`。 4. 交换集合:使用std::swap函数可以交换两个集合的内容,例如`std::swap(set, other)`。 5. 清楚...
recommend-type

关于vs strcpy_s()和strcat_s()用法探究

errno_t strcpy_s(char *strDestination, size_t numberOfElements, const char *strSource); ``` 其中,strDestination是目标字符串,numberOfElements是目标字符串的大小,strSource是源字符串。 例如: ```c ...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。