python二维傅里叶变换后,方形滤波
时间: 2023-07-07 22:04:13 浏览: 164
在Python中进行二维傅里叶变换可以使用NumPy库中的fft2函数。对于一个二维的图像矩阵f(x,y),其傅里叶变换可以表示为F(u,v),其中u和v表示频率变量。代码如下:
```python
import numpy as np
from scipy.fftpack import fft2, ifft2
# 读取原始图像
img = cv2.imread('image.png', 0)
# 进行二维傅里叶变换
f = np.fft.fft2(img)
# 将低频部分移到中心
fshift = np.fft.fftshift(f)
# 频率域图像可视化
magnitude_spectrum = 20 * np.log(np.abs(fshift))
# 定义方形滤波器
rows, cols = img.shape
crow, ccol = int(rows/2), int(cols/2)
mask = np.zeros((rows, cols), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
# 将滤波器应用于频率域图像
fshift_filtered = fshift * mask
# 将低频部分移回原位
f_filtered = np.fft.ifftshift(fshift_filtered)
# 进行反傅里叶变换,得到滤波后的图像
img_filtered = np.real(np.fft.ifft2(f_filtered))
# 显示结果
cv2.imshow('Original Image', img)
cv2.imshow('Spectrum', magnitude_spectrum)
cv2.imshow('Filtered Image', img_filtered)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在上述代码中,我们首先读取了原始图像,并进行了二维傅里叶变换。然后将低频部分移到中心,方便可视化。接下来,我们定义了一个方形滤波器,将其应用于频率域图像的低频部分,并将结果移回原位。最后,我们进行反傅里叶变换,得到滤波后的图像,并将其显示出来。
阅读全文