基于树莓派4B做一个使用Python-OpenCV实现手势识别的代码
时间: 2023-06-14 08:04:45 浏览: 236
好的,下面给出一个使用Python-OpenCV实现手势识别的代码,需要在树莓派上安装OpenCV库:
```python
import cv2
import numpy as np
# 设置视频捕获对象
cap = cv2.VideoCapture(0)
while True:
# 读取视频帧
ret, frame = cap.read()
# 镜像翻转
frame = cv2.flip(frame, 1)
# 设置ROI区域
roi = frame[100:400, 100:400]
# 灰度化处理
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
# 高斯滤波
blur = cv2.GaussianBlur(gray, (5, 5), 0)
# 二值化处理
_, thresh = cv2.threshold(blur, 60, 255, cv2.THRESH_BINARY_INV)
# 查找轮廓
contours, _ = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 寻找最大轮廓
if len(contours) > 0:
contour = max(contours, key=cv2.contourArea)
# 计算凸包
hull = cv2.convexHull(contour)
# 绘制轮廓与凸包
cv2.drawContours(roi, [contour], 0, (0, 255, 0), 2)
cv2.drawContours(roi, [hull], 0, (0, 0, 255), 2)
# 计算手指数量
defects = cv2.convexityDefects(contour, cv2.convexHull(contour, returnPoints=False))
if defects is not None:
count = 0
for i in range(defects.shape[0]):
s, e, f, d = defects[i][0]
start = tuple(contour[s][0])
end = tuple(contour[e][0])
far = tuple(contour[f][0])
# 计算手指长度和深度
a = np.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
b = np.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
c = np.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
angle = np.arccos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c))
# 判断是否为手指
if angle <= np.pi / 2 and d > 10000:
count += 1
cv2.circle(roi, far, 3, (255, 0, 0), -1)
# 显示手指数
if count > 0:
count += 1
cv2.putText(frame, str(count), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2)
# 显示视频帧
cv2.imshow('frame', frame)
# 退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放视频捕获对象
cap.release()
# 关闭所有窗口
cv2.destroyAllWindows()
```
该代码可以实现手势识别,通过计算手指数量判断手势种类,可以用于控制树莓派中的其他功能。
阅读全文