使用pytorch编写一个Gan
时间: 2024-10-20 07:16:29 浏览: 33
在PyTorch中创建一个生成式对抗网络(GAN)的基本步骤如下:
1. **导入库**:
```python
import torch
import torch.nn as nn
from torch.autograd import Variable
```
2. **定义生成器(Generator)**:
- GAN通常包含两个神经网络:生成器G和判别器D。生成器的作用是从随机噪声中生成看起来像训练数据的新样本。例如,你可以使用DCGAN结构(Deconvolutional Generative Adversarial Networks):
```python
class Generator(nn.Module):
def __init__(self, nz=100, ngf=64, nc=3, img_size=64):
super(Generator, self).__init__()
self.main = nn.Sequential(
# 输入是一个固定大小的噪声向量
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, input):
return self.main(input)
```
3. **定义判别器(Discriminator)**:
```python
class Discriminator(nn.Module):
def __init__(self, ndf=64, nc=3, img_size=64):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input).view(-1)
```
4. **训练循环**:
- 定义优化器、损失函数等
- 在每个训练迭代中,更新生成器和判别器
完整示例:
```python
# 实例化模型
gen = Generator()
disc = Discriminator()
# 进行训练...
optimizer_G = torch.optim.Adam(gen.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = torch.optim.Adam(disc.parameters(), lr=0.0002, betas=(0.5, 0.999))
for epoch in range(num_epochs):
for data in dataloader:
# 更多细节如数据预处理和批大小...
noise = torch.randn(batch_size, nz, 1, 1)
fake_data = gen(noise)
real_data = data
real_labels = torch.ones(batch_size)
fake_labels = torch.zeros(batch_size)
# 训练判别器
disc.zero_grad()
output = disc(real_data)
errD_real = criterion(output, real_labels)
d_loss_real = errD_real.mean()
output = disc(fake_data.detach())
errD_fake = criterion(output, fake_labels)
d_loss_fake = errD_fake.mean()
errD = d_loss_real + d_loss_fake
errD.backward()
optimizer_D.step()
# 训练生成器
gen.zero_grad()
valid = disc(fake_data)
errG = criterion(valid, real_labels)
g_loss = errG.mean()
g_loss.backward()
optimizer_G.step()
```
阅读全文