Dijkstra移动机器人路径规划代码
时间: 2023-07-30 10:07:27 浏览: 76
下面是Dijkstra算法的网格移动机器人路径规划的Python实现代码:
```
import heapq
def dijkstra(start, end, grid):
# 将起点加入堆中
heap = [(0, start)]
# 初始化距离字典和路径字典
distances = {start: 0}
path = {start: None}
# 遍历堆
while heap:
# 取出堆中距离最小的节点
(cost, current) = heapq.heappop(heap)
# 判断是否到达终点
if current == end:
break
# 遍历当前节点的邻居节点
for neighbor in grid.neighbors(current):
# 计算到达邻居节点的代价
new_cost = distances[current] + grid.cost(current, neighbor)
# 判断是否已经遍历过该节点,或者代价更大
if neighbor not in distances or new_cost < distances[neighbor]:
# 更新距离和路径
distances[neighbor] = new_cost
path[neighbor] = current
# 将邻居节点加入堆中
heapq.heappush(heap, (new_cost, neighbor))
# 生成路径
node = end
result = [node]
while path[node] is not None:
result.append(path[node])
node = path[node]
result.reverse()
return result
```
其中,`start`和`end`分别表示起点和终点的坐标,`grid`是一个网格类,包含了邻居节点和节点代价的计算。在实际应用中,需要根据具体情况修改`grid`类的实现。`dijkstra`函数返回从起点到终点的最短路径。
阅读全文