import Astar import heapq start_cor = (19, 0) waypoints = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] end_cor = (1, 20) def distance(_from, _to): x1, y1 = _from x2, y2 = _to distancepath = Astar.find_path(x1, y1, x2, y2) return distancepath n = len(waypoints) adj_matrix = [[0] * n for _ in range(n)] for i in range(n): for j in range(i + 1, n): dist = distance(waypoints[i], waypoints[j]) adj_matrix[i][j] = dist adj_matrix[j][i] = dist start = 0 end = n - 1 distances = [[float('inf')] * (n + 1) for _ in range(n)] visited = set() heap = [(0, 0, start)] while heap: (dist, num_visited, current) = heapq.heappop(heap) if current == end and num_visited == 8: break if (current, num_visited) in visited: continue visited.add((current, num_visited)) for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0: new_num_visited = num_visited if neighbor in range(start + 1, end) and (current not in range(start + 1, end)) and num_visited < 8: new_num_visited += 1 new_distance = dist + weight if new_distance < distances[neighbor][new_num_visited]: distances[neighbor][new_num_visited] = new_distance heapq.heappush(heap, (new_distance, new_num_visited, neighbor)) min_dist = float('inf') min_num_visited = 8 for i in range(8): if distances[end][i] < min_dist: min_dist = distances[end][i] min_num_visited = i path = [end] current = end num_visited = min_num_visited for i in range(len(waypoints), 0, -1): if current in range(i): num_visited -= 1 for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and (neighbor, num_visited) in visited and distances[neighbor][num_visited] + weight == \ distances[current][num_visited]: path.append(neighbor) current = neighbor break path.reverse() print(f"The optimal path from start to end through the 8 waypoints is: {path}") print(f"The total distance is: {distances[end][min_num_visited]}")

时间: 2024-02-14 13:19:58 浏览: 85
这段代码是用来解决一个路径规划问题,目标是找到从起点到终点经过8个给定点的最短路径。其中使用了A*算法来计算两点之间的距离,并利用堆来实现最小优先队列。具体流程是先计算出8个给定点之间的距离,再从起点开始,每次取出离当前点最近的点,如果该点是终点并且已经经过了8个给定点,则找到了最短路径。如果该点不是终点,则将该点的所有邻居加入队列中,并更新到达邻居的距离和经过的给定点数。最后根据经过的给定点数从终点开始倒推出最短路径。
相关问题

import Astar import heapq start_cor = (19, 0) waypoints = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] end_cor = (1, 20) # Define a function to calculate the distance between two coordinates def distance(_from, _to): x1, y1 = _from x2, y2 = _to distancepath = Astar.find_path(x1, y1, x2, y2) return distancepath # Compute the distances between all pairs of waypoints n = len(waypoints) adj_matrix = [[0] * n for _ in range(n)] for i in range(n): for j in range(i + 1, n): dist = distance(waypoints[i], waypoints[j]) adj_matrix[i][j] = dist adj_matrix[j][i] = dist # Set the start and end points start = 0 end = n - 1 # Initialize the distances and visited set distances = [[float('inf')] * (n+1) for _ in range(n)] visited = set() # Initialize the heap with the start point and 0 distance and 0 waypoints visited heap = [(0, 0, start)]

这段代码使用A*算法和堆(heap)数据结构实现了从起点到终点经过所有指定航点的最短路径。首先,定义了起点、终点和指定航点的坐标。然后,定义了一个计算两个坐标之间距离的函数distance,内部使用了A*算法计算两个坐标之间的最短路径长度。接着,使用上述计算函数计算了所有航点之间的距离,并存储在邻接矩阵adj_matrix中。接下来,定义了起点、终点到所有航点的距离distances和已经访问过的航点集合visited,并初始化堆heap,将起点和0距离以及0已访问航点数加入堆中。最后,可以使用堆来实现Dijkstra算法,找到从起点到终点经过所有指定航点的最短路径。

import Astar import heapq start_cor = (19, 0) treasures = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] end_cor = (1, 20) # 定义一个函数计算两个坐标之间的距离 def distance(_from, _to): # 返回从起点到终点的最短路径 x1, y1 = _from x2, y2 = _to distancepath = Astar.find_path(x1, y1, x2, y2) return distancepath n = len(treasures) adj_matrix = [[0] * n for _ in range(n)] for i in range(n): for j in range(i + 1, n): dist = distance(treasures[i], treasures[j]) adj_matrix[i][j] = dist adj_matrix[j][i] = dist # 使用Dijkstra算法求解最短路径 start = 0 end = n - 1 distances = [float('inf')] * n distances[start] = 0 visited = set() heap = [(0, start)] while heap: (dist, current) = heapq.heappop(heap) if current == end: break if current in visited: continue visited.add(current) for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and neighbor not in visited: new_distance = dist + weight if new_distance < distances[neighbor]: distances[neighbor] = new_distance heapq.heappush(heap, (new_distance, neighbor)) # 输出结果 path = [end] current = end while current != start: for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and distances[current] == distances[neighbor] + weight: path.append(neighbor) current = neighbor break print(path) path.reverse() print(f"从第{start+1}个坐标开始经过其他几个坐标最后到达第{end+1}个坐标的最短路线为:{path}") print(f"总距离为:{distances[end]}"

这段代码实现的是与上一段代码几乎相同的功能,不同之处在于使用了不同的变量名和起点终点坐标的表示方式。具体来说,代码完成以下步骤: 1. 导入 Astar 模块和 heapq 模块。 2. 定义起点坐标 `start_cor` 和终点坐标 `end_cor`,以及一个包含多个宝藏坐标的列表 `treasures`。 3. 定义一个函数 `distance`,用于计算两个坐标之间的距离。在该函数中,调用了 A* 算法的 `find_path` 函数来计算从起点到终点的最短路径,并将路径长度作为距离返回。 4. 根据宝藏坐标列表 `treasures`,使用 `distance` 函数计算出各个宝藏之间的距离,构建邻接矩阵 `adj_matrix`。 5. 使用 Dijkstra 算法求解从起点到终点的最短路径。在该算法中,使用 `heapq` 模块维护一个优先队列,每次从队列中取出距离最小的节点进行遍历,并更新其相邻节点的距离。 6. 根据 Dijkstra 算法的结果,使用邻接矩阵和起点终点信息,回溯出从起点到终点的最短路径,并输出路径信息和总距离。 相对于上一段代码,这段代码使用了更加直观的变量名,同时在计算距离时也更加直接,直接使用 A* 算法计算最短路径的长度。
阅读全文

相关推荐

import heapq import copy # 定义状态类 class State: def __init__(self, board, moves=0, parent=None, last_move=None): self.board = board self.moves = moves self.parent = parent self.last_move = last_move def __lt__(self, other): return self.moves < other.moves def __eq__(self, other): return self.board == other.board # 定义转移函数 def move(state, direction): new_board = copy.deepcopy(state.board) for i in range(len(new_board)): if 0 in new_board[i]: j = new_board[i].index(0) break if direction == "up": if i == 0: return None else: new_board[i][j], new_board[i-1][j] = new_board[i-1][j], new_board[i][j] elif direction == "down": if i == len(new_board)-1: return None else: new_board[i][j], new_board[i+1][j] = new_board[i+1][j], new_board[i][j] elif direction == "left": if j == 0: return None else: new_board[i][j], new_board[i][j-1] = new_board[i][j-1], new_board[i][j] elif direction == "right": if j == len(new_board)-1: return None else: new_board[i][j], new_board[i][j+1] = new_board[i][j+1], new_board[i][j] return State(new_board, state.moves+1, state, direction) # 定义A*算法 def astar(start, goal): heap = [] closed = set() heapq.heappush(heap, start) while heap: state = heapq.heappop(heap) if state.board == goal: path = [] while state.parent: path.append(state) state = state.parent path.append(state) return path[::-1] closed.add(state) for direction in ["up", "down", "left", "right"]: child = move(state, direction) if child is None: continue if child in closed: continue if child not in heap: heapq.heappush(heap, child) else: for i, (p, c) in enumerate(heap): if c == child and p.moves > child.moves: heap[i] = (child, child) heapq.heapify(heap) # 测试 start_board = [[1, 2, 3], [4, 5, 6], [7, 8, 0]] goal_board = [[2, 3, 6], [1, 5, 8], [4, 7, 0]] start_state = State(start_board) goal_state = State(goal_board) path = astar(start_state, goal_board) for state in path: print(state.board)

import Astar import heapq start = (19, 0) treasures = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] end = (1, 20) # 定义一个函数计算两个坐标之间的距离 def distance(_from, _to): # 返回从起点到终点的最短路径 x1, y1 = _from x2, y2 = _to distancepath = Astar.find_path(x1, y1, x2, y2) return distancepath n = len(treasures) adj_matrix = [[0] * n for _ in range(n)] for i in range(n): for j in range(i + 1, n): dist = distance(treasures[i], treasures[j]) adj_matrix[i][j] = dist adj_matrix[j][i] = dist # 使用Dijkstra算法求解最短路径 start = 0 end = n - 1 distances = [float('inf')] * n distances[start] = 0 visited = set() heap = [(0, start)] while heap: (dist, current) = heapq.heappop(heap) if current == end: break if current in visited: continue visited.add(current) for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and neighbor not in visited: new_distance = dist + weight if new_distance < distances[neighbor]: distances[neighbor] = new_distance heapq.heappush(heap, (new_distance, neighbor)) # 输出结果 path = [end] current = end while current != start: for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and distances[current] == distances[neighbor] + weight: path.append(neighbor) current = neighbor break print(path) path.reverse() print(f"从第{start+1}个坐标开始经过其他几个坐标最后到达第{end+1}个坐标的最短路线为:{path}") print(f"总距离为:{distances[end]}")

最新推荐

recommend-type

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页
recommend-type

PyMySQL-1.1.0rc1.tar.gz

PyMySQL-1.1.0rc1.tar.gz
recommend-type

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip
recommend-type

docker构建php开发环境

docker构建php开发环境
recommend-type

VB程序实例59_系统信息_显示分辨率.zip

VB程序实例,可供参考学习使用,希望对你有所帮助
recommend-type

StarModAPI: StarMade 模组开发的Java API工具包

资源摘要信息:"StarModAPI: StarMade 模组 API是一个用于开发StarMade游戏模组的编程接口。StarMade是一款开放世界的太空建造游戏,玩家可以在游戏中自由探索、建造和战斗。该API为开发者提供了扩展和修改游戏机制的能力,使得他们能够创建自定义的游戏内容,例如新的星球类型、船只、武器以及各种游戏事件。 此API是基于Java语言开发的,因此开发者需要具备一定的Java编程基础。同时,由于文档中提到的先决条件是'8',这很可能指的是Java的版本要求,意味着开发者需要安装和配置Java 8或更高版本的开发环境。 API的使用通常需要遵循特定的许可协议,文档中提到的'在许可下获得'可能是指开发者需要遵守特定的授权协议才能合法地使用StarModAPI来创建模组。这些协议通常会规定如何分发和使用API以及由此产生的模组。 文件名称列表中的"StarModAPI-master"暗示这是一个包含了API所有源代码和文档的主版本控制仓库。在这个仓库中,开发者可以找到所有的API接口定义、示例代码、开发指南以及可能的API变更日志。'Master'通常指的是一条分支的名称,意味着该分支是项目的主要开发线,包含了最新的代码和更新。 开发者在使用StarModAPI时应该首先下载并解压文件,然后通过阅读文档和示例代码来了解如何集成和使用API。在编程实践中,开发者需要关注API的版本兼容性问题,确保自己编写的模组能够与StarMade游戏的当前版本兼容。此外,为了保证模组的质量,开发者应当进行充分的测试,包括单人游戏测试以及多人游戏环境下的测试,以确保模组在不同的使用场景下都能够稳定运行。 最后,由于StarModAPI是针对特定游戏的模组开发工具,开发者在创建模组时还需要熟悉StarMade游戏的内部机制和相关扩展机制。这通常涉及到游戏内部数据结构的理解、游戏逻辑的编程以及用户界面的定制等方面。通过深入学习和实践,开发者可以利用StarModAPI创建出丰富多样的游戏内容,为StarMade社区贡献自己的力量。" 由于题目要求必须输出大于1000字的内容,上述内容已经满足此要求。如果需要更加详细的信息或者有其他特定要求,请提供进一步的说明。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据清洗术:Poisson分布下的异常值检测法

![R语言数据清洗术:Poisson分布下的异常值检测法](https://ucc.alicdn.com/images/user-upload-01/img_convert/a12c695f8b68033fc45008ede036b653.png?x-oss-process=image/resize,s_500,m_lfit) # 1. R语言与数据清洗概述 数据清洗作为数据分析的初级阶段,是确保后续分析质量的关键。在众多统计编程语言中,R语言因其强大的数据处理能力,成为了数据清洗的宠儿。本章将带您深入了解数据清洗的含义、重要性以及R语言在其中扮演的角色。 ## 1.1 数据清洗的重要性
recommend-type

设计一个简易的Python问答程序

设计一个简单的Python问答程序,我们可以使用基本的命令行交互,结合字典或者其他数据结构来存储常见问题及其对应的答案。下面是一个基础示例: ```python # 创建一个字典存储问题和答案 qa_database = { "你好": "你好!", "你是谁": "我是一个简单的Python问答程序。", "你会做什么": "我可以回答你关于Python的基础问题。", } def ask_question(): while True: user_input = input("请输入一个问题(输入'退出'结束):")
recommend-type

PHP疫情上报管理系统开发与数据库实现详解

资源摘要信息:"本资源是一个PHP疫情上报管理系统,包含了源码和数据库文件,文件编号为170948。该系统是为了适应疫情期间的上报管理需求而开发的,支持网络员用户和管理员两种角色进行数据的管理和上报。 管理员用户角色主要具备以下功能: 1. 登录:管理员账号通过直接在数据库中设置生成,无需进行注册操作。 2. 用户管理:管理员可以访问'用户管理'菜单,并操作'管理员'和'网络员用户'两个子菜单,执行增加、删除、修改、查询等操作。 3. 更多管理:通过点击'更多'菜单,管理员可以管理'评论列表'、'疫情情况'、'疫情上报管理'、'疫情分类管理'以及'疫情管理'等五个子菜单。这些菜单项允许对疫情信息进行增删改查,对网络员提交的疫情上报进行管理和对疫情管理进行审核。 网络员用户角色的主要功能是疫情管理,他们可以对疫情上报管理系统中的疫情信息进行增加、删除、修改和查询等操作。 系统的主要功能模块包括: - 用户管理:负责系统用户权限和信息的管理。 - 评论列表:管理与疫情相关的评论信息。 - 疫情情况:提供疫情相关数据和信息的展示。 - 疫情上报管理:处理网络员用户上报的疫情数据。 - 疫情分类管理:对疫情信息进行分类统计和管理。 - 疫情管理:对疫情信息进行全面的增删改查操作。 该系统采用面向对象的开发模式,软件开发和硬件架设都经过了细致的规划和实施,以满足实际使用中的各项需求,并且完善了软件架设和程序编码工作。系统后端数据库使用MySQL,这是目前广泛使用的开源数据库管理系统,提供了稳定的性能和数据存储能力。系统前端和后端的业务编码工作采用了Thinkphp框架结合PHP技术,并利用了Ajax技术进行异步数据交互,以提高用户体验和系统响应速度。整个系统功能齐全,能够满足疫情上报管理和信息发布的业务需求。" 【标签】:"java vue idea mybatis redis" 从标签来看,本资源虽然是一个PHP疫情上报管理系统,但提到了Java、Vue、Mybatis和Redis这些技术。这些技术标签可能是误标,或是在资源描述中提及的其他技术栈。在本系统中,主要使用的技术是PHP、ThinkPHP框架、MySQL数据库、Ajax技术。如果资源中确实涉及到Java、Vue等技术,可能是前后端分离的开发模式,或者系统中某些特定模块使用了这些技术。 【压缩包子文件的文件名称列表】: CS268000_*** 此列表中只提供了单一文件名,没有提供详细文件列表,无法确定具体包含哪些文件和资源,但假设它可能包含了系统的源代码、数据库文件、配置文件等必要组件。