import Astar import heapq start = (19, 0) treasures = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] end = (1, 20) # 定义一个函数计算两个坐标之间的距离 def distance(_from, _to): # 返回从起点到终点的最短路径 x1, y1 = _from x2, y2 = _to distancepath = Astar.find_path(x1, y1, x2, y2) return distancepath n = len(treasures) adj_matrix = [[0] * n for _ in range(n)] for i in range(n): for j in range(i + 1, n): dist = distance(treasures[i], treasures[j]) adj_matrix[i][j] = dist adj_matrix[j][i] = dist # 使用Dijkstra算法求解最短路径 start = 0 end = n - 1 distances = [float('inf')] * n distances[start] = 0 visited = set() heap = [(0, start)] while heap: (dist, current) = heapq.heappop(heap) if current == end: break if current in visited: continue visited.add(current) for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and neighbor not in visited: new_distance = dist + weight if new_distance < distances[neighbor]: distances[neighbor] = new_distance heapq.heappush(heap, (new_distance, neighbor)) # 输出结果 path = [end] current = end while current != start: for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and distances[current] == distances[neighbor] + weight: path.append(neighbor) current = neighbor break print(path) path.reverse() print(f"从第{start+1}个坐标开始经过其他几个坐标最后到达第{end+1}个坐标的最短路线为:{path}") print(f"总距离为:{distances[end]}")
时间: 2024-03-30 20:37:45 浏览: 65
这段代码实现了一个求解最短路线的问题,使用了 A* 算法和 Dijkstra 算法来计算路径。具体来说,代码完成以下步骤:
1. 导入 Astar 模块和 heapq 模块。
2. 定义起点 `start` 和终点 `end` 的坐标,以及一个包含多个宝藏坐标的列表 `treasures`。
3. 定义一个函数 `distance`,用于计算两个坐标之间的距离。在该函数中,调用了 A* 算法的 `find_path` 函数来计算从起点到终点的最短路径,并将路径长度作为距离返回。
4. 根据宝藏坐标列表 `treasures`,使用 `distance` 函数计算出各个宝藏之间的距离,构建邻接矩阵 `adj_matrix`。
5. 使用 Dijkstra 算法求解从起点到终点的最短路径。在该算法中,使用 `heapq` 模块维护一个优先队列,每次从队列中取出距离最小的节点进行遍历,并更新其相邻节点的距离。
6. 根据 Dijkstra 算法的结果,使用邻接矩阵和起点终点信息,回溯出从起点到终点的最短路径,并输出路径信息和总距离。
需要注意的是,代码中的 `start` 和 `end` 变量在不同的地方表示的是不同的含义,需要特别注意。
相关问题
import Astar import heapq start_cor = (19, 0) waypoints = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] end_cor = (1, 20) # Define a function to calculate the distance between two coordinates def distance(_from, _to): x1, y1 = _from x2, y2 = _to distancepath = Astar.find_path(x1, y1, x2, y2) return distancepath # Compute the distances between all pairs of waypoints n = len(waypoints) adj_matrix = [[0] * n for _ in range(n)] for i in range(n): for j in range(i + 1, n): dist = distance(waypoints[i], waypoints[j]) adj_matrix[i][j] = dist adj_matrix[j][i] = dist # Set the start and end points start = 0 end = n - 1 # Initialize the distances and visited set distances = [[float('inf')] * (n+1) for _ in range(n)] visited = set() # Initialize the heap with the start point and 0 distance and 0 waypoints visited heap = [(0, 0, start)]
这段代码使用A*算法和堆(heap)数据结构实现了从起点到终点经过所有指定航点的最短路径。首先,定义了起点、终点和指定航点的坐标。然后,定义了一个计算两个坐标之间距离的函数distance,内部使用了A*算法计算两个坐标之间的最短路径长度。接着,使用上述计算函数计算了所有航点之间的距离,并存储在邻接矩阵adj_matrix中。接下来,定义了起点、终点到所有航点的距离distances和已经访问过的航点集合visited,并初始化堆heap,将起点和0距离以及0已访问航点数加入堆中。最后,可以使用堆来实现Dijkstra算法,找到从起点到终点经过所有指定航点的最短路径。
import Astar import heapq start_cor = (19, 0) treasures = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] end_cor = (1, 20) # 定义一个函数计算两个坐标之间的距离 def distance(_from, _to): # 返回从起点到终点的最短路径 x1, y1 = _from x2, y2 = _to distancepath = Astar.find_path(x1, y1, x2, y2) return distancepath n = len(treasures) adj_matrix = [[0] * n for _ in range(n)] for i in range(n): for j in range(i + 1, n): dist = distance(treasures[i], treasures[j]) adj_matrix[i][j] = dist adj_matrix[j][i] = dist # 使用Dijkstra算法求解最短路径 start = 0 end = n - 1 distances = [float('inf')] * n distances[start] = 0 visited = set() heap = [(0, start)] while heap: (dist, current) = heapq.heappop(heap) if current == end: break if current in visited: continue visited.add(current) for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and neighbor not in visited: new_distance = dist + weight if new_distance < distances[neighbor]: distances[neighbor] = new_distance heapq.heappush(heap, (new_distance, neighbor)) # 输出结果 path = [end] current = end while current != start: for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and distances[current] == distances[neighbor] + weight: path.append(neighbor) current = neighbor break print(path) path.reverse() print(f"从第{start+1}个坐标开始经过其他几个坐标最后到达第{end+1}个坐标的最短路线为:{path}") print(f"总距离为:{distances[end]}"
这段代码实现的是与上一段代码几乎相同的功能,不同之处在于使用了不同的变量名和起点终点坐标的表示方式。具体来说,代码完成以下步骤:
1. 导入 Astar 模块和 heapq 模块。
2. 定义起点坐标 `start_cor` 和终点坐标 `end_cor`,以及一个包含多个宝藏坐标的列表 `treasures`。
3. 定义一个函数 `distance`,用于计算两个坐标之间的距离。在该函数中,调用了 A* 算法的 `find_path` 函数来计算从起点到终点的最短路径,并将路径长度作为距离返回。
4. 根据宝藏坐标列表 `treasures`,使用 `distance` 函数计算出各个宝藏之间的距离,构建邻接矩阵 `adj_matrix`。
5. 使用 Dijkstra 算法求解从起点到终点的最短路径。在该算法中,使用 `heapq` 模块维护一个优先队列,每次从队列中取出距离最小的节点进行遍历,并更新其相邻节点的距离。
6. 根据 Dijkstra 算法的结果,使用邻接矩阵和起点终点信息,回溯出从起点到终点的最短路径,并输出路径信息和总距离。
相对于上一段代码,这段代码使用了更加直观的变量名,同时在计算距离时也更加直接,直接使用 A* 算法计算最短路径的长度。
阅读全文