waypoints = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] end_cor = (1, 20) def distance(_from, _to): x1, y1 = _from x2, y2 = _to distancepath = Astar.find_path(x1, y1, x2, y2) return distancepath n = len(waypoints) adj_matrix = [[0] * n for _ in range(n)] for i in range(n): for j in range(i + 1, n): dist = distance(waypoints[i], waypoints[j]) adj_matrix[i][j] = dist adj_matrix[j][i] = dist start = 0 end = n - 1 distances = [[float('inf')] * (n + 1) for _ in range(n)] visited = set() heap = [(0, 0, start)] while heap: (dist, num_visited, current) = heapq.heappop(heap) if current == end and num_visited == 8: break if (current, num_visited) in visited: continue visited.add((current, num_visited)) for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0: new_num_visited = num_visited if neighbor in range(start + 1, end) and (current not in range(start + 1, end)) and num_visited < 8: new_num_visited += 1 new_distance = dist + weight if new_distance < distances[neighbor][new_num_visited]: distances[neighbor][new_num_visited] = new_distance heapq.heappush(heap, (new_distance, new_num_visited, neighbor)) min_dist = float('inf') min_num_visited = 8 for i in range(8): if distances[end][i] < min_dist: min_dist = distances[end][i] min_num_visited = i每排是什么意思
时间: 2024-03-30 15:36:11 浏览: 109
这段代码实现了一个寻找最短路径的算法,其中:
- waypoints 是一个包含多个点坐标的列表,代表路径上的多个路标点。
- end_cor 是路径的终点坐标。
- distance 函数用于计算两个点之间的距离,使用了 Astar 算法寻路。
- adj_matrix 是一个邻接矩阵,用于存储每个路标点之间的距离。
- 该算法使用堆和动态规划的思路,计算出从起点到终点的最短路径,并且要求途经的路标点个数为 8 个。最后输出最短路径的长度和途经的路标点个数。
相关问题
import Astar # 定义起点和终点的坐标 start_cor = (19, 0) end_cor = (1, 20) # 定义路径上的路标点 waypoints = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] # 定义计算两个点之间距离的函数 def distance(_from, _to): x1, y1 = _from x2, y2 = _to # 使用 Astar 算法寻路,计算出两个点之间的距离 distancepath = Astar.find_path(x1, y1, x2, y2) return distancepath将以上代码改进以实现从坐标start_cor开始经过waypoint中的所有坐标最后到达终点坐标end_co,要使整个路径最短并打印出经过的每一个坐标r
好的,让我来看看。您可以尝试以下代码:
```
import Astar
# 定义起点和终点的坐标
start_cor = (19, 0)
end_cor = (1, 20)
# 定义路径上的路标点
waypoints = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)]
# 将起点和终点添加到路标点列表中
waypoints.insert(0, start_cor)
waypoints.append(end_cor)
# 定义计算两个点之间距离的函数
def distance(_from, _to):
x1, y1 = _from
x2, y2 = _to
# 计算出所有相邻路标点之间的距离
distances = []
for i in range(len(waypoints)-1):
path = Astar.find_path(waypoints[i][0], waypoints[i][1], waypoints[i+1][0], waypoints[i+1][1])
distances.append(len(path))
# 计算出起点到终点的最短距离
path = Astar.find_path(start_cor[0], start_cor[1], end_cor[0], end_cor[1])
shortest_distance = len(path)
# 计算出经过所有路标点的最短距离
for i in range(len(waypoints)):
remaining_waypoints = waypoints[i+1:]
remaining_distances = distances[i+1:]
total_distance = shortest_distance
for j in range(len(remaining_waypoints)):
path = Astar.find_path(waypoints[i][0], waypoints[i][1], remaining_waypoints[j][0], remaining_waypoints[j][1])
total_distance += len(path) + remaining_distances[j]
if i == 0:
shortest_path = path
shortest_total_distance = total_distance
else:
if total_distance < shortest_total_distance:
shortest_path = path
shortest_total_distance = total_distance
# 打印出经过的每一个坐标
for point in shortest_path:
print(point)
# 返回经过所有路标点的最短距离
return shortest_total_distance
```
这段代码会将起点和终点添加到路标点列表中,然后通过 A* 算法计算出所有相邻路标点之间的距离。接着,它会计算出起点到终点的最短距离,并尝试计算出经过所有路标点的最短距离。最后,它会打印出经过的每一个坐标,并返回经过所有路标点的最短距离。
有代码如下:start_cor = (19, 0) end_cor = (1, 20) # 定义路径上的路标点 waypoints = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] # 定义计算两个点之间距离的函数 def distance(_from, _to): x1, y1 = _from x2, y2 = _to # 使用 A* 算法寻路,计算出两个点之间的距离 dist = get_dist(x1, y1, x2, y2) return dist 其中distance函数返回的是两个坐标之间的距离将以上代码改进以实现从坐标start_cor开始经过waypoint中的所有坐标最后到达终点坐标end_co,要使整个路径最短并打印出经过的每一个坐标
可以使用 A* 算法来实现从起点到终点的最短路径,并经过所有的路标点。
首先,需要实现 A* 算法中的节点类,其中包括节点坐标、父节点、g 值、h 值和 f 值:
```python
class Node:
def __init__(self, x, y, parent=None):
self.x = x
self.y = y
self.parent = parent
self.g = 0
self.h = 0
self.f = 0
```
接下来,实现 A* 算法的主函数:
```python
def astar(start, end, waypoints):
open_list = []
closed_list = []
path = []
# 创建起点和终点节点
start_node = Node(start[0], start[1])
end_node = Node(end[0], end[1])
# 加入起点节点到 open_list 中
open_list.append(start_node)
# 当 open_list 不为空时循环
while open_list:
# 找到 f 值最小的节点
current_node = open_list[0]
current_index = 0
for index, node in enumerate(open_list):
if node.f < current_node.f:
current_node = node
current_index = index
# 将当前节点从 open_list 中移除,并加入到 closed_list 中
open_list.pop(current_index)
closed_list.append(current_node)
# 如果当前节点是目标节点,返回路径
if current_node.x == end_node.x and current_node.y == end_node.y:
path = []
current = current_node
while current is not None:
path.append((current.x, current.y))
current = current.parent
return path[::-1]
# 找出当前节点相邻的节点
adjacent_nodes = []
for new_x, new_y in ((0, -1), (0, 1), (-1, 0), (1, 0)):
node_x = current_node.x + new_x
node_y = current_node.y + new_y
if node_x < 0 or node_x >= 20 or node_y < 0 or node_y >= 20:
continue
if (node_x, node_y) in waypoints:
continue
new_node = Node(node_x, node_y, current_node)
adjacent_nodes.append(new_node)
# 对相邻节点进行遍历
for adjacent_node in adjacent_nodes:
# 如果相邻节点已经在 closed_list 中,则跳过
if adjacent_node in closed_list:
continue
# 计算相邻节点的 g 值、h 值和 f 值
adjacent_node.g = current_node.g + distance((current_node.x, current_node.y), (adjacent_node.x, adjacent_node.y))
adjacent_node.h = distance((adjacent_node.x, adjacent_node.y), (end_node.x, end_node.y))
adjacent_node.f = adjacent_node.g + adjacent_node.h
# 如果相邻节点已经在 open_list 中,则比较两者的 g 值大小
if adjacent_node in open_list:
index = open_list.index(adjacent_node)
if open_list[index].g > adjacent_node.g:
open_list[index].g = adjacent_node.g
open_list[index].parent = current_node
open_list[index].f = open_list[index].g + open_list[index].h
else:
# 如果相邻节点不在 open_list 中,则加入 open_list
open_list.append(adjacent_node)
return path
```
最后,可以使用如下代码来实现从起点到终点经过所有路标点的最短路径,并打印出每一个坐标:
```python
start_cor = (19, 0)
end_cor = (1, 20)
waypoints = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)]
# 定义计算两个点之间距离的函数
def distance(_from, _to):
x1, y1 = _from
x2, y2 = _to
dist = abs(x1 - x2) + abs(y1 - y2)
return dist
# 计算从起点到终点经过所有路标点的最短路径
path = [start_cor]
for i in range(len(waypoints)):
start = path[-1]
end = waypoints[i]
subpath = astar(start, end, [])
path += subpath[1:]
subpath = astar(path[-1], end_cor, [])
path += subpath[1:]
# 打印出每一个坐标
for i in range(len(path)):
print(path[i])
```
阅读全文